Synchrotron-radiation computed laminography for high-resolution three-dimensional imaging of flat devices

被引:58
作者
Helfen, Lukas [1 ]
Myagotin, Anton
Rack, Alexander
Pernot, Petra
Mikulik, Petr
Di Michiel, Marco
Baumbach, Tilo
机构
[1] Forschungszentrum Karlsruhe, Inst Synchroton Radiat, ANKA, Karlsruhe, Germany
[2] Univ Karlsruhe, Karlsruhe, Germany
[3] European Synchrotron Radiat Facil, Grenoble, France
[4] Masaryk Univ, Dept Condensed Matter Phys, Brno, Czech Republic
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2007年 / 204卷 / 08期
关键词
D O I
10.1002/pssa.200775676
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Synchrotron-radiation computed laminography (SRCL) is developed as a method for high-resolution three-dimensional (3D) imaging of regions of interest (ROIs) in all kinds of laterally extended devices. One of the application targets is the 3D X-ray inspection of microsystems. In comparison to computed tomography (CT), the method is based on the inclination of the tomographic axis with respect to the incident X-ray beam by a defined angle. With the microsystem aligned roughly perpendicular to the rotation axis, the integral X-ray transmission on the two-dimensional (2D) detector does not change exceedingly during the scan. In consequence, the integrity of laterally extended devices can be preserved, what distinguishes SRCL from CT where ROIs have to be destructively extracted (e.g. by cutting out a sample) before being imaged. The potential of the method for three-dimensional imaging of microsystem devices will be demonstrated by examples of flip-chip bonded and wire-bonded devices. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:2760 / 2765
页数:6
相关论文
共 12 条
[1]   Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays [J].
Cloetens, P ;
Ludwig, W ;
Baruchel, J ;
Van Dyck, D ;
Van Landuyt, J ;
Guigay, JP ;
Schlenker, M .
APPLIED PHYSICS LETTERS, 1999, 75 (19) :2912-2914
[2]   Digital x-ray tomosynthesis: current state of the art and clinical potential [J].
Dobbins, JT ;
Godfrey, DJ .
PHYSICS IN MEDICINE AND BIOLOGY, 2003, 48 (19) :R65-R106
[3]   X-ray computed laminography:: an approach of computed tomography for applications with limited access [J].
Gondrom, S ;
Zhou, J ;
Maisl, M ;
Reiter, H ;
Kröning, M ;
Arnold, W .
NUCLEAR ENGINEERING AND DESIGN, 1999, 190 (1-2) :141-147
[4]   Hard x-ray quantitative non-interferometric phase-contrast microscopy [J].
Gureyev, TE ;
Raven, C ;
Snigirev, A ;
Snigireva, I ;
Wilkins, SW .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (05) :563-567
[5]   High-resolution three-dimensional imaging of flat objects by synchrotron-radiation computed laminography -: art. no. 071915 [J].
Helfen, L ;
Baumbach, T ;
Mikulík, P ;
Kiel, D ;
Pernot, P ;
Cloetens, P ;
Baruchel, J .
APPLIED PHYSICS LETTERS, 2005, 86 (07) :1-3
[6]   Investigation of hybrid pixel detector arrays by synchrotron-radiation imaging [J].
Helfen, L. ;
Myagotin, A. ;
Pernot, P. ;
DiMichiel, M. ;
Mikulik, P. ;
Berthold, A. ;
Baumbach, T. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 563 (01) :163-166
[7]   A theoretical framework for filtered backprojection in tomosynthesis [J].
Lauritsch, G ;
Harer, WH .
MEDICAL IMAGING 1998: IMAGE PROCESSING, PTS 1 AND 2, 1998, 3338 :1127-1137
[8]   Quantitative phase imaging using hard x rays [J].
Nugent, KA ;
Gureyev, TE ;
Cookson, DF ;
Paganin, D ;
Barnea, Z .
PHYSICAL REVIEW LETTERS, 1996, 77 (14) :2961-2964
[9]   Nanotomography based on hard x-ray microscopy with refractive lenses [J].
Schroer, CG ;
Meyer, J ;
Kuhlmann, M ;
Benner, B ;
Günzler, TF ;
Lengeler, B ;
Rau, C ;
Weitkamp, T ;
Snigirev, A ;
Snigireva, I .
APPLIED PHYSICS LETTERS, 2002, 81 (08) :1527-1529
[10]   Nanotomography based on double asymmetrical Bragg diffraction [J].
Stampanoni, M ;
Borchert, G ;
Abela, R ;
Rüegsegger, P .
APPLIED PHYSICS LETTERS, 2003, 82 (17) :2922-2924