Involvement of intestinal dendritic cells in oral tolerance, immunity to pathogens, and inflammatory bowel disease

被引:122
作者
Kelsall, BL [1 ]
Leon, F [1 ]
机构
[1] NIAID, Mucosal Immunobiol Sect, Lab Mol Immunol, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1111/j.0105-2896.2005.00292.x
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Dendritic cells (DCs) are composed of a family of cells, now recognized to be essential for innate and acquired immunity. DCs at mucosal surfaces have a particular capacity to induce the differentiation of regulatory T cells producing interleukin-10 (IL-10) and transforming growth factor-beta (TGF-beta) in the steady state (non-infected, non-immunized), yet they retain the capacity to induce effector T cells in response to invasive pathogens. This decision between the induction of active immunity and tolerance will depend on the subpopulation of DC involved and the surface receptors engaged during DC activation and T-cell priming. The local microenvironment will likely play an important role both in defining the DC phenotype and in providing direct signals to responding T cells. Furthermore, DCs in organized mucosal lymphoid tissues preferentially induce the expression of CCR9 and alpha 4 beta 7 on T cells, which results in T-cell homing to the intestinal lamina propria. Finally, DCs may play an important role in the maintenance of abnormal intestinal inflammation either by driving pathogenic T-cell responses in mesenteric lymph nodes or by acting to expand or maintain pathogenic T cells locally at sites of inflammation. In this review, a brief discussion of general issues of DC biology that are pertinent to mucosal immunity is followed by a more in-depth discussion of the phenotype and function of DC populations in the intestine.
引用
收藏
页码:132 / 148
页数:17
相关论文
共 163 条
[1]   Role of chemokines and chemokine receptors in the gastrointestinal tract [J].
Ajuebor, MN ;
Swain, MG .
IMMUNOLOGY, 2002, 105 (02) :137-143
[2]   Pulmonary dendritic cells producing IL-10 mediate tolerance induced by respiratory exposure to antigen [J].
Akbari, O ;
DeKruyff, RH ;
Umetsu, DT .
NATURE IMMUNOLOGY, 2001, 2 (08) :725-731
[3]  
Akbari O, 2002, NAT MED, V8, P1024, DOI 10.1038/nm745
[4]   The role of dendritic cells, B cells, and M cells in gut-oriented immune responses [J].
Alpan, O ;
Rudomen, G ;
Matzinger, P .
JOURNAL OF IMMUNOLOGY, 2001, 166 (08) :4843-4852
[5]   Origin, precursors and differentiation of mouse dendritic cells [J].
Ardavín, C .
NATURE REVIEWS IMMUNOLOGY, 2003, 3 (07) :582-590
[6]   Colonic dendritic cells, intestinal inflammation, and T cell-mediated bone destruction are modulated by recombinant osteoprotegerin [J].
Ashcroft, AJ ;
Cruickshank, SM ;
Croucher, PL ;
Perry, MJ ;
Rollinson, S ;
Lippitt, JM ;
Child, JA ;
Dunstan, C ;
Felsburg, PJ ;
Morgan, GJ ;
Carding, SR .
IMMUNITY, 2003, 19 (06) :849-861
[7]   Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody [J].
Asselin-Paturel, C ;
Brizard, G ;
Pin, JJ ;
Brière, F ;
Trinchieri, G .
JOURNAL OF IMMUNOLOGY, 2003, 171 (12) :6466-6477
[8]   Mouse type IIFN-producing cells are immature APCs with plasmacytoid morphology [J].
Asselin-Paturel, C ;
Boonstra, A ;
Dalod, M ;
Durand, I ;
Yessaad, N ;
Dezutter-Dambuyant, C ;
Vicari, A ;
O'Garra, A ;
Biron, C ;
Brière, F ;
Trinchieri, G .
NATURE IMMUNOLOGY, 2001, 2 (12) :1144-1150
[9]   Immunobiology of dendritic cells [J].
Banchereau, J ;
Briere, F ;
Caux, C ;
Davoust, J ;
Lebecque, S ;
Liu, YT ;
Pulendran, B ;
Palucka, K .
ANNUAL REVIEW OF IMMUNOLOGY, 2000, 18 :767-+
[10]  
Barton GM, 2002, CURR TOP MICROBIOL, V270, P81