Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses

被引:26
作者
Ahnood, A. [1 ]
Escudie, M. C. [1 ]
Cicione, R. [1 ]
Abeyrathne, C. D. [1 ,2 ]
Ganesan, K. [1 ]
Fox, K. E. [1 ,3 ]
Garrett, D. J. [1 ,4 ]
Stacey, A. [1 ]
Apollo, N. V. [1 ,4 ]
Lichter, S. G. [1 ]
Thomas, C. D. L. [5 ]
Tran, N. [2 ]
Meffin, H. [6 ]
Prawer, S. [1 ]
机构
[1] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[2] Univ Melbourne, Ctr Neural Engn, Melbourne Sch Engn, Parkville, Vic 3010, Australia
[3] RMIT Univ, Sch Aerosp Mech & Mfg Engn, Carlton, Vic 3056, Australia
[4] Bion Inst, Melbourne, Vic 3002, Australia
[5] Univ Melbourne, Melbourne Dent Sch, Parkville, Vic 3002, Australia
[6] Univ Melbourne, Ctr Integrat Brain Funct, Australian Coll Optometry, Natl Vis Res Inst,Dept Optometry & Vis Sci, Parkville, Vic 3010, Australia
关键词
Microelectrode array; Microelectrode array-CMOS integration; High acuity retinal prostheses; 3-Dimensional microfabrication; ELECTRICAL-STIMULATION; GANGLION-CELLS; FABRICATION;
D O I
10.1007/s10544-015-9952-y
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
High density electrodes are a new frontier for biomedical implants. Increasing the density and the number of electrodes used for the stimulation of retinal ganglion cells is one possible strategy for enhancing the quality of vision experienced by patients using retinal prostheses. The present work presents an integration strategy for a diamond based, high density, stimulating electrode array with a purpose built application specific integrated circuit (ASIC). The strategy is centered on flip-chip bonding of indium bumps to create high count and density vertical interconnects between the stimulator ASIC and an array of diamond neural stimulating electrodes. The use of polydimethylsiloxane (PDMS) housing prevents cross-contamination of the biocompatible diamond electrode with non-biocompatible materials, such as indium, used in the microfabrication process. Micro-imprint lithography allowed edge-to-edge micro-scale pattering of the indium bumps on non-coplanar substrates that have a form factor that can conform to body organs and thus are ideally suited for biomedical applications. Furthermore, microimprint lithography ensures the compatibility of lithography with the silicon ASIC and aluminum contact pads. Although this work focuses on 256 stimulating diamond electrode arrays with a pitch of 150 mu m, the use of indium bump bonding technology and vertical interconnects facilitates implants with tens of thousands electrodes with a pitch as low as 10 mu m, thus ensuring validity of the strategy for future high acuity retinal prostheses, and bionic implants in general.
引用
收藏
页数:11
相关论文
共 22 条
[1]   Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications [J].
Bajaj, Piyush ;
Akin, Demir ;
Gupta, Amit ;
Sherman, Debby ;
Shi, Bing ;
Auciello, Orlando ;
Bashir, Rashid .
BIOMEDICAL MICRODEVICES, 2007, 9 (06) :787-794
[2]   TOPOGRAPHY OF GANGLION-CELLS IN HUMAN RETINA [J].
CURCIO, CA ;
ALLEN, KA .
JOURNAL OF COMPARATIVE NEUROLOGY, 1990, 300 (01) :5-25
[3]   Flip Chip Bonding of 68 X 68 MWIR LED Arrays [J].
Das, Naresh Chandra ;
Taysing-Lara, Monica ;
Olver, Kimberley Anderson ;
Kiamilev, Fouad ;
Prineas, J. P. ;
Olesberg, J. T. ;
Koerperick, E. J. ;
Murray, L. M. ;
Boggess, Tom F. .
IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING, 2009, 32 (01) :9-13
[4]   The effect of the nature of H-bonding groups on diffusion through PDMS membranes saturated with octanol and toluene [J].
Du Plessis, J ;
Pugh, WJ ;
Judefeind, A ;
Hadgraft, J .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 15 (01) :63-69
[5]   An all-diamond, hermetic electrical feedthrough array for a retinal prosthesis [J].
Ganesan, Kumaravelu ;
Garrett, David J. ;
Ahnood, Arman ;
Shivdasani, Mohit N. ;
Tong, Wei ;
Turnley, Ann M. ;
Fox, Kate ;
Meffin, Hamish ;
Prawer, Steven .
BIOMATERIALS, 2014, 35 (03) :908-915
[6]   Ultra-nanocrystalline diamond electrodes: optimization towards neural stimulation applications [J].
Garrett, David J. ;
Ganesan, Kumaravelu ;
Stacey, Alastair ;
Fox, Kate ;
Meffin, Hamish ;
Prawer, Steven .
JOURNAL OF NEURAL ENGINEERING, 2012, 9 (01)
[7]   Conducting polymers for neural interfaces: Challenges in developing an effective long-term implant [J].
Green, Rylie A. ;
Lovell, Nigel H. ;
Wallace, Gordon G. ;
Poole-Warren, Laura A. .
BIOMATERIALS, 2008, 29 (24-25) :3393-3399
[8]  
Guenther T, 2011, IEEE ENG MED BIO, P6717, DOI 10.1109/IEMBS.2011.6091656
[9]   Bionic vision: system architectures - a review [J].
Guenther, Thomas ;
Lovell, Nigel H. ;
Suaning, Gregg J. .
EXPERT REVIEW OF MEDICAL DEVICES, 2012, 9 (01) :33-48
[10]   Electrical stimulation of retinal ganglion cells with diamond and the development of an all diamond retinal prosthesis [J].
Hadjinicolaou, Alex E. ;
Leung, Ronald T. ;
Garrett, David J. ;
Ganesan, Kumaravelu ;
Fox, Kate ;
Nayagam, David A. X. ;
Shivdasani, Mohit N. ;
Meffin, Hamish ;
Ibbotson, Michael R. ;
Prawer, Steven ;
O'Brien, Brendan J. .
BIOMATERIALS, 2012, 33 (24) :5812-5820