Microcavity-Integrated Graphene Photodetector

被引:797
作者
Furchi, Marco [1 ]
Urich, Alexander [1 ]
Pospischil, Andreas [1 ]
Lilley, Govinda [1 ]
Unterrainer, Karl [1 ]
Detz, Hermann [2 ]
Klang, Pavel [2 ]
Andrews, Aaron Maxwell [2 ]
Schrenk, Werner [2 ]
Strasser, Gottfried [2 ]
Mueller, Thomas [1 ]
机构
[1] Vienna Univ Technol, Inst Photon, A-1040 Vienna, Austria
[2] Vienna Univ Technol, Ctr Micro & Nanostruct, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Graphene; photodetector; microcavity; photoresponsivity; FILMS; GENERATION; DIODES; LASER;
D O I
10.1021/nl204512x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is an increasing interest in using graphene(1,2) for optoelectronic applications.(3-19) However, because graphene is an inherently weak optical absorber (only approximate to 2.3% absorption), novel concepts need to be developed to increase the absorption and take full advantage of its unique optical properties. We demonstrate that by monolithically integrating graphene with a Fabry-Perot microcavity, the optical absorption is 26-fold enhanced, reaching values >60%. We present a graphene-based microcavity photodetector with responsivity of 21 mA/W. Our approach can be applied to a variety of other graphene devices, such as electro-absorption modulators, variable optical attenuators, or light emitters, and provides a new route to graphene photonics with the potential for applications in communications, security, sensing and spectroscopy.
引用
收藏
页码:2773 / 2777
页数:5
相关论文
共 43 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[4]   Optical constants of graphene layers in the visible range [J].
Bruna, M. ;
Borini, S. .
APPLIED PHYSICS LETTERS, 2009, 94 (03)
[5]   Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics [J].
De Arco, Lewis Gomez ;
Zhang, Yi ;
Schlenker, Cody W. ;
Ryu, Koungmin ;
Thompson, Mark E. ;
Zhou, Chongwu .
ACS NANO, 2010, 4 (05) :2865-2873
[6]   Progress in AlInN-GaN Bragg reflectors: Application to a microcavity light emitting diode [J].
Dorsaz, J ;
Carlin, JF ;
Gradecak, S ;
Ilegems, M .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (08)
[7]   Strong plasmonic enhancement of photovoltage in graphene [J].
Echtermeyer, T. J. ;
Britnell, L. ;
Jasnos, P. K. ;
Lombardo, A. ;
Gorbachev, R. V. ;
Grigorenko, A. N. ;
Geim, A. K. ;
Ferrari, A. C. ;
Novoselov, K. S. .
NATURE COMMUNICATIONS, 2011, 2
[8]  
Edwards D.F., 1985, Handbook of optical constants of solids
[9]   Light-matter interaction in a microcavity-controlled graphene transistor [J].
Engel, Michael ;
Steiner, Mathias ;
Lombardo, Antonio ;
Ferrari, Andrea C. ;
Loehneysen, Hilbert V. ;
Avouris, Phaedon ;
Krupke, Ralph .
NATURE COMMUNICATIONS, 2012, 3
[10]   Graphene-based photodetector with two cavities [J].
Ferreira, Aires ;
Peres, N. M. R. ;
Ribeiro, R. M. ;
Stauber, T. .
PHYSICAL REVIEW B, 2012, 85 (11)