Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device

被引:613
作者
Shi, L [1 ]
Li, DY
Yu, CH
Jang, WY
Kim, D
Yao, Z
Kim, P
Majumdar, A
机构
[1] Univ Texas, Ctr Nano & Mol Sci & Technol, Dept Mech Engn, Austin, TX 78712 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Dept Phys, Berkeley, CA 94720 USA
[3] Columbia Univ, Dept Phys, New York, NY 10027 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Dept Mech Engn, Div Sci Mat, Berkeley, CA 94720 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2003年 / 125卷 / 05期
关键词
heat transfer; measurement techniques; microscale; nanoscale; thermoelectric;
D O I
10.1115/1.1597619
中图分类号
O414.1 [热力学];
学科分类号
摘要
We have batch-fabricated a microdevice consisting of two adjacent symmetric silicon nitride membranes suspended by long silicon nitride beams for measuring thermophysical properties of one-dimensional nanostructures (nanotubes, nanowires, and nanobelts) bridging the two membranes. A platinum resistance heater/thermometer is fabricated on each membrane. One membrane can be Joule heated to cause heat conduction through the sample to the other membrane. Thermal conductance, electrical conductance, and Seebeck coefficient can be measured using this microdevice in the temperature range of 4-400 K of an evacuated Helium cryostat. Measurement sensitivity, errors, and uncertainty are discussed. Measurement results of a 148 nm and a 10 nm-diameter single wall carbon nanotube bundle (ire presented.
引用
收藏
页码:881 / 888
页数:8
相关论文
共 26 条
  • [1] Unusually high thermal conductivity of carbon nanotubes
    Berber, S
    Kwon, YK
    Tománek, D
    [J]. PHYSICAL REVIEW LETTERS, 2000, 84 (20) : 4613 - 4616
  • [2] Luttinger-liquid behaviour in carbon nanotubes
    Bockrath, M
    Cobden, DH
    Lu, J
    Rinzler, AG
    Smalley, RE
    Balents, L
    McEuen, PL
    [J]. NATURE, 1999, 397 (6720) : 598 - 601
  • [3] Is the intrinsic thermoelectric power of carbon nanotubes positive?
    Bradley, K
    Jhi, SH
    Collins, PG
    Hone, J
    Cohen, ML
    Louie, SG
    Zettl, A
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (20) : 4361 - 4364
  • [4] THERMAL-CONDUCTIVITY MEASUREMENT FROM 30-K TO 750-K - THE 3-OMEGA METHOD
    CAHILL, DG
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1990, 61 (02) : 802 - 808
  • [5] Thermal conductivity of carbon nanotubes
    Che, JW
    Çagin, T
    Goddard, WA
    [J]. NANOTECHNOLOGY, 2000, 11 (02) : 65 - 69
  • [6] Extreme oxygen sensitivity of electronic properties of carbon nanotubes
    Collins, PG
    Bradley, K
    Ishigami, M
    Zettl, A
    [J]. SCIENCE, 2000, 287 (5459) : 1801 - 1804
  • [7] MATCHING THE RESISTIVITY OF SI-NB THIN-FILM THERMOMETERS TO THE EXPERIMENTAL TEMPERATURE-RANGE
    DEVECCHIO, D
    TABOREK, P
    RUTLEDGE, JE
    [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (11) : 5367 - 5368
  • [8] Phonons in carbon nanotubes
    Dresselhaus, MS
    Eklund, PC
    [J]. ADVANCES IN PHYSICS, 2000, 49 (06) : 705 - 814
  • [9] Thermoelectric power of bismuth nanocomposites
    Heremans, JP
    Thrush, CM
    Morelli, DT
    Wu, MC
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (21) : 4
  • [10] Electrical and thermal transport properties of magnetically aligned single walt carbon nanotube films
    Hone, J
    Llaguno, MC
    Nemes, NM
    Johnson, AT
    Fischer, JE
    Walters, DA
    Casavant, MJ
    Schmidt, J
    Smalley, RE
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (05) : 666 - 668