Ab initio interaction energies of hydrogen-bonded amino acid side chain-nucleic acid base interactions

被引:58
作者
Cheng, AC
Frankel, AD
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Grad Grp Biophys, San Francisco, CA 94143 USA
关键词
D O I
10.1021/ja037264g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen-bonding interactions often make substantial contributions to the specificity of protein-nucleic acid complexes. Using a geometric modeling approach, we previously identified 28 possible doubly hydrogen-bonded interactions to the four unpaired RNA bases. Here we present interaction energies of these models, calculated by ab initio quantum chemical methods, and describe a correlation between the computed energies and observed frequencies of the interactions. In general, interactions with charged side chains show the most favorable energies. An Asp/Glu-G interaction may be especially favorable for recognition of unpaired guanines in RNAs. Asn and Ser/Thr/Tyr side chains are calculated to make iso-energetic interactions to the Hoogsteen face of adenine, but Asn-A interactions are much more common with DNA than RNA, and Ser/Thr/Tyr-A interactions are more common with RNA than DNA. Examination of the known interactions suggests that Ser/Thr/Tyr may be accommodated in a wider variety of protein contexts at RNA-protein interfaces. With these calculated intrinsic affinities, it should be possible to better assess the contributions of bidentate hydrogen-bonding interactions to RNA- and DNA-binding specificity. Copyright © 2004 American Chemical Society.
引用
收藏
页码:434 / 435
页数:2
相关论文
共 23 条
[1]   Structure-based analysis of Protein-RNA interactions using the program ENTANGLE [J].
Allers, J ;
Shamoo, Y .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 311 (01) :75-86
[2]  
[Anonymous], 2001, JAG SOFTW VERS 4 1
[3]   Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA [J].
Antson, AA ;
Dodson, EJ ;
Dodson, G ;
Greaves, RB ;
Chen, XP ;
Gollnick, P .
NATURE, 1999, 401 (6750) :235-242
[4]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[5]   CALCULATION OF SMALL MOLECULAR INTERACTIONS BY DIFFERENCES OF SEPARATE TOTAL ENERGIES - SOME PROCEDURES WITH REDUCED ERRORS [J].
BOYS, SF ;
BERNARDI, F .
MOLECULAR PHYSICS, 1970, 19 (04) :553-&
[6]   Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains [J].
Cheng, AC ;
Chen, WW ;
Fuhrmann, CN ;
Frankel, AD .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 327 (04) :781-796
[7]   HYDROGEN-BONDING AND BIOLOGICAL SPECIFICITY ANALYZED BY PROTEIN ENGINEERING [J].
FERSHT, AR ;
SHI, JP ;
KNILLJONES, J ;
LOWE, DM ;
WILKINSON, AJ ;
BLOW, DM ;
BRICK, P ;
CARTER, P ;
WAYE, MMY ;
WINTER, G .
NATURE, 1985, 314 (6008) :235-238
[8]  
Hobza P, 1997, J COMPUT CHEM, V18, P1136, DOI 10.1002/(SICI)1096-987X(19970715)18:9<1136::AID-JCC3>3.0.CO
[9]  
2-S
[10]   Hydrogen bonding between amino acid backbone and side chain analogues: A high-level ab initio study [J].
Kim, KS ;
Friesner, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (52) :12952-12961