3D thermoplastic elastomer microfluidic devices for biological probe immobilization

被引:33
作者
Brassard, Daniel [1 ]
Clime, Liviu [1 ]
Li, Kebin [1 ]
Geissler, Matthias [1 ]
Miville-Godin, Caroline [1 ]
Roy, Emmanuel [1 ]
Veres, Teodor [1 ]
机构
[1] Natl Res Council Canada, Inst Ind Mat, Boucherville, PQ J4B 6Y4, Canada
关键词
MICROARRAY FABRICATION; CONTINUOUS-FLOW; ARRAY DEPOSITION; GENE-EXPRESSION; DNA MICROARRAYS; FLUID-FLOWS; IMMUNOASSAYS; NETWORKS; PROTEINS; SURFACES;
D O I
10.1039/c1lc20714h
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microfluidics has emerged as a valuable tool for the high-resolution patterning of biological probes on solid supports. Yet, its widespread adoption as a universal biological immobilization tool is still limited by several technical challenges, particularly for the patterning of isolated spots using three-dimensional (3D) channel networks. A key limitation arises from the difficulties to adapt the techniques and materials typically used in prototyping to low-cost mass-production. In this paper, we present the fabrication of thin thermoplastic elastomer membranes with microscopic through-holes using a hot-embossing process that is compatible with high-throughput manufacturing. The membranes provide the basis for the fabrication of highly integrated 3D microfluidic devices with a footprint of only 1 x 1 cm(2). When placed on a solid support, the device allows for the immobilization of up to 96 different probes in the form of a 10 x 10 array comprising isolated spots of 50 x 50 mu m(2). The design of the channel network is optimized using 3D simulations based on the Lattice-Boltzmann method to promote capillary action as the sole force distributing the liquid in the device. Finally, we demonstrate the patterning of DNA and protein arrays on hard thermoplastic substrates yielding spots of excellent definition that prove to be highly specific in subsequent hybridization experiments.
引用
收藏
页码:4099 / 4107
页数:9
相关论文
共 65 条
[1]   Next-generation DNA sequencing techniques [J].
Ansorge, Wilhelm J. .
NEW BIOTECHNOLOGY, 2009, 25 (04) :195-203
[2]   Bio-microarray fabrication techniques - A review [J].
Barbulovic-Nad, Irena ;
Lucente, Michael ;
Sun, Yu ;
Zhang, Mingjun ;
Wheeler, Aaron R. ;
Bussmann, Markus .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2006, 26 (04) :237-259
[3]   Mind the gap! [J].
Becker, Holger .
LAB ON A CHIP, 2010, 10 (03) :271-273
[4]  
Becker H, 2009, LAB CHIP, V9, P2759, DOI [10.1039/b916505n, 10.1039/b916505]
[5]   Comparative modeling and analysis of microfluidic and conventional DNA microarrays [J].
Benn, JA ;
Hu, J ;
Hogan, BJ ;
Fry, RC ;
Samson, LD ;
Thorsen, T .
ANALYTICAL BIOCHEMISTRY, 2006, 348 (02) :284-293
[6]   Micromosaic immunoassays [J].
Bernard, A ;
Michel, B ;
Delamarche, E .
ANALYTICAL CHEMISTRY, 2001, 73 (01) :8-12
[7]  
BRASSARD D, 2011, Patent No. 201100154
[8]   A packaged optical slot-waveguide ring resonator sensor array for multiplex label-free assays in labs-on-chips [J].
Carlborg, C. F. ;
Gylfason, K. B. ;
Kazmierczak, A. ;
Dortu, F. ;
Banuls Polo, M. J. ;
Maquieira Catala, A. ;
Kresbach, G. M. ;
Sohlstrom, H. ;
Moh, T. ;
Vivien, L. ;
Popplewell, J. ;
Ronan, G. ;
Barrios, C. A. ;
Stemme, G. ;
van der Wijngaart, W. .
LAB ON A CHIP, 2010, 10 (03) :281-290
[9]   A novel PDMS microfluidic spotter for fabrication of protein chips and microarrays [J].
Chang-Yen, David A. ;
Myszka, David G. ;
Gale, Bruce K. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2006, 15 (05) :1145-1151
[10]   Nucleic acid microarrays created in the double-spiral format on a circular microfluidic disk [J].
Chen, Hong ;
Wang, Lin ;
Li, Paul C. H. .
LAB ON A CHIP, 2008, 8 (05) :826-829