Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges

被引:189
作者
He, Xiaoxiao [1 ,2 ,3 ]
Gao, Jinhao [1 ,2 ,4 ]
Gambhir, Sanjiv Sam [1 ,2 ,5 ,6 ]
Cheng, Zhen [1 ,2 ]
机构
[1] Stanford Univ, Dept Radiol, MIPS, Bio X Program,Sch Med, Stanford, CA 94305 USA
[2] Stanford Univ, Stanford Canc Ctr, Sch Med, Stanford, CA 94305 USA
[3] Hunan Univ, Inst Biol, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
[4] Xiamen Univ, Coll Chem & Chem Engn, Dept Biol Chem, Xiamen 361005, Peoples R China
[5] Stanford Univ, Dept Radiol, Stanford, CA 94305 USA
[6] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
基金
美国国家卫生研究院;
关键词
SEMICONDUCTOR QUANTUM DOTS; CELL-PENETRATING PEPTIDES; RESONANCE ENERGY-TRANSFER; MULTIFUNCTIONAL MAGNETIC NANOPARTICLES; PROTEIN-PROTEIN INTERACTIONS; WALLED CARBON NANOTUBES; GROWTH-FACTOR RECEPTOR; IN-VIVO; LIVING SUBJECTS; TUMOR VASCULATURE;
D O I
10.1016/j.molmed.2010.08.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Near-infrared fluorescence (NIRF) imaging promises to improve cancer imaging and management; advances in nanomaterials allow scientists to combine new nanoparticles with NIRF imaging techniques, thereby fulfilling this promise. Here, we present a synopsis of current developments in NIRF nanoprobes, their use in imaging small living subjects, their pharmacokinetics and toxicity, and finally their integration into multimodal imaging strategies. We also discuss challenges impeding the clinical translation of NIRF nanoprobes for molecular imaging of cancer. Whereas utilization of most NIRF nanoprobes remains at a proof-of-principle stage, optimizing the impact of nanomedicine in cancer patient diagnosis and management will probably be realized through persistent interdisciplinary amalgamation of diverse research fields.
引用
收藏
页码:574 / 583
页数:10
相关论文
共 102 条
[31]   Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications [J].
Gao, Jinhao ;
Gu, Hongwei ;
Xu, Bing .
ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (08) :1097-1107
[32]   In vivo cancer targeting and imaging with semiconductor quantum dots [J].
Gao, XH ;
Cui, YY ;
Levenson, RM ;
Chung, LWK ;
Nie, SM .
NATURE BIOTECHNOLOGY, 2004, 22 (08) :969-976
[33]   Semiconductor quantum dots for bioanalysis [J].
Gill, Ron ;
Zayats, Maya ;
Willner, Itamar .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (40) :7602-7625
[34]   Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity [J].
Hama, Yukihiro ;
Koyama, Yoshinori ;
Urano, Yasuteru ;
Choyke, Peter L. ;
Kobayashi, Hisataka .
BREAST CANCER RESEARCH AND TREATMENT, 2007, 103 (01) :23-28
[35]   A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors [J].
Hardman, R .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2006, 114 (02) :165-172
[36]   Noninvasive detection of clinically occult lymph-node metastases in prostate cancer [J].
Harisinghani, MG ;
Barentsz, J ;
Hahn, PF ;
Deserno, WM ;
Tabatabaei, S ;
van de Kaa, CH ;
de la Rosette, J ;
Weissleder, R .
NEW ENGLAND JOURNAL OF MEDICINE, 2003, 348 (25) :2491-U5
[37]   In vivo Quantum-Dot Toxicity Assessment [J].
Hauck, Tanya S. ;
Anderson, Robin E. ;
Fischer, Hans C. ;
Newbigging, Susan ;
Chan, Warren C. W. .
SMALL, 2010, 6 (01) :138-144
[38]   In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes [J].
He, Xiaoxiao ;
Wang, Kemin ;
Cheng, Zhen .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2010, 2 (04) :349-366
[39]   Near-infrared fluorescence: application to in vivo molecular imaging [J].
Hilderbrand, Scott A. ;
Weissleder, Ralph .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2010, 14 (01) :71-79
[40]  
HOLMAN BL, 1992, J NUCL MED, V33, P1888