In vivo near-infrared fluorescence imaging of cancer with nanoparticle-based probes

被引:209
作者
He, Xiaoxiao [1 ,2 ,3 ]
Wang, Kemin [3 ]
Cheng, Zhen [1 ,2 ]
机构
[1] Stanford Univ, Sch Med, Dept Radiol, Mol Imaging Program Stanford,Bio X Program, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Stanford Canc Ctr, Stanford, CA 94305 USA
[3] Hunan Univ, Ctr Biomed Engn, State Key Lab Chemobiosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
基金
英国医学研究理事会;
关键词
UP-CONVERSION LUMINESCENCE; DOPED SILICA NANOPARTICLES; PHOSPHATE NANOCOMPOSITE PARTICLES; QUANTUM DOTS; ENERGY-TRANSFER; CONTRAST AGENT; LABELED LDL; UPCONVERTING NANOPHOSPHORS; LIPOPROTEIN NANOPARTICLES; PHOTOACOUSTIC TOMOGRAPHY;
D O I
10.1002/wnan.85
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The use of in vivo near-infrared fluorescence (NIRF) imaging techniques for sensitive cancer early detection is highly desirable, because biological tissues show very low absorption and autofluorescence in the NIR spectrum window. Cancer NIRF molecular imaging relies greatly on stable, highly specific and sensitive molecular probes. Nanoparticle-based NIRF probes have overcome some of the limitations of the conventional NIRF organic dyes, such as poor hydrophilicity and photostability, low quantum yield, insufficient stability in biological system, low detection sensitivity, etc. Therefore, a lot of efforts have been made to actively develop novel NIRF nanoparticles for in vivo cancer molecular imaging. The main focus of this article is to provide a brief overview of the synthesis, surface modification, and in vivo cancer imaging applications of nanoparticle-based NIRF probes, including dye-containing nanoparticles, NIRF quantum dots, and upconversion nanoparticles. (C) 2010 John Wiley & Sons, Inc. WIREs Nanomed Nanobiotechnol 2010 2 349-366
引用
收藏
页码:349 / 366
页数:18
相关论文
共 139 条
[1]   Perspectives on the physical chemistry of semiconductor nanocrystals [J].
Alivisatos, AP .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13226-13239
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]   Near-Infrared Emitting Fluorophore-Doped Calcium Phosphate Nanoparticles for In Vivo Imaging of Human Breast Cancer [J].
Altinoglu, Erhan i. ;
Russin, Timothy J. ;
Kaiser, James M. ;
Barth, Brian M. ;
Eklund, Peter C. ;
Kester, Mark ;
Adair, James H. .
ACS NANO, 2008, 2 (10) :2075-2084
[4]   In vivo fluorescence imaging for tissue diagnostics [J].
AnderssonEngels, S ;
afKlinteberg, C ;
Svanberg, K ;
Svanberg, S .
PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (05) :815-824
[5]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[6]   Bioconjugated luminescent nanoparticles for biological applications [J].
Bagwe, RP ;
Zhao, XJ ;
Tan, WH .
JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2003, 24 (3-4) :453-464
[7]   A new class of far-red and near-infrared biological labels based on alloyed semiconductor quantum dots [J].
Bailey, RE ;
Strausburg, JB ;
Nie, SM .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2004, 4 (06) :569-574
[8]   Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size [J].
Bailey, RE ;
Nie, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (23) :7100-7106
[9]   Fluorescence imaging of tumors in vivo [J].
Ballou, B ;
Ernst, LA ;
Waggoner, AS .
CURRENT MEDICINAL CHEMISTRY, 2005, 12 (07) :795-805
[10]   Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands [J].
Becker, A ;
Hessenius, C ;
Licha, K ;
Ebert, B ;
Sukowski, U ;
Semmler, W ;
Wiedenmann, B ;
Grötzinger, C .
NATURE BIOTECHNOLOGY, 2001, 19 (04) :327-331