Universality for the breakup of invariant tori in Hamiltonian flows

被引:23
作者
Chandre, C
Govin, M
Jauslin, HR
Koch, H
机构
[1] Univ Bourgogne, CNRS, Phys Lab, F-21011 Dijon, France
[2] Univ Texas, Dept Math, Austin, TX 78712 USA
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 06期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.57.6612
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this article, we describe a new renormalization-group scheme for analyzing the breakup of invariant tori for Hamiltonian systems with two degrees of freedom. The transformation, which acts on Hamiltonians that are quadratic in the action variables, combines a rescaling of phase space and a partial elimination of irrelevant (nonresonant) frequencies. It is implemented numerically for the case applying to golden invariant tori. We find a nontrivial fixed point and compute the corresponding scaling and critical indices. If one compares flows to maps in the canonical way, our results are consistent with existing data on the breakup of golden invariant circles for area-preserving maps.
引用
收藏
页码:6612 / 6617
页数:6
相关论文
共 22 条
[1]  
ABAD JJ, 1998, 98261 U TEX
[2]  
[Anonymous], 1995, INTRO DIOPHANTINE AP
[3]  
Arnold V. I., 1963, RUSS MATH SURV, V18, P13, DOI DOI 10.1070/RM1963V018N05ABEH004130
[4]   BREAKDOWN OF UNIVERSALITY IN RENORMALIZATION DYNAMICS FOR CRITICAL INVARIANT TORUS [J].
ARTUSO, R ;
CASATI, G ;
SHEPELYANSKY, DL .
EUROPHYSICS LETTERS, 1991, 15 (04) :381-386
[5]   A PROOF OF KOLMOGOROV THEOREM ON INVARIANT TORI USING CANONICAL-TRANSFORMATIONS DEFINED BY THE LIE METHOD [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 79 (02) :201-223
[6]   Kolmogorov-Arnold-Moser renormalization-group approach to the breakup of invariant tori in Hamiltonian systems [J].
Chandre, C ;
Govin, M ;
Jauslin, HR .
PHYSICAL REVIEW E, 1998, 57 (02) :1536-1543
[7]  
DELALLAVE R, 1993, COMPUTATIONAL PHYSIC
[8]  
Deprit A., 1969, Celestial Mechanics, V1, P12, DOI 10.1007/BF01230629
[9]   STOCHASTICITY IN CLASSICAL HAMILTONIAN-SYSTEMS - UNIVERSAL ASPECTS [J].
ESCANDE, DF .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1985, 121 (3-4) :165-261
[10]   Kolmogorov-Arnold-Moser-renormalization-group analysis of stability in Hamiltonian flows [J].
Govin, M ;
Chandre, C ;
Jauslin, HR .
PHYSICAL REVIEW LETTERS, 1997, 79 (20) :3881-3884