Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation

被引:288
作者
Kuyper, M
Hartog, MMP
Toirkens, MJ
Almering, MJH
Winkler, AA
van Dijken, JP
Pronk, JT
机构
[1] Delft Univ Technol, Dept Biotechnol, NL-2628 BC Delft, Netherlands
[2] Bird Engn BV, NL-3044 CK Rotterdam, Netherlands
关键词
xylose isomerase; Piromyces; hemicellulose; fermentation; pentose; yeast; bioethanol; pentose phosphate pathway; lignocellulose; metabolic engineering;
D O I
10.1016/j.femsyr.2004.09.010
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a mu(max) of 0.03 h(-1). In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose to glycolytic intermediates, in a xylose-isomerase-expressing S. cerevisiae strain. The overexpressed enzymes were xylulokinase (EC 2.7.1.17), ribulose 5-phosphate isomerase (EC 5.3.1.6), ribulose 5-phosphate epimerase (EC 5.3.1.1), transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). In addition, the GRE3 gene encoding aldose reductase was deleted to further minimise xylitol production. Surprisingly the resulting strain grew anaerobically on xylose in synthetic media with a mu(max) as high as 0.09 h(-1) without any non-defined mutagenesis or selection. During growth on xylose, xylulose formation was absent and xylitol production was negligible. The specific xylose consumption rate in anaerobic xylose cultures was 1.1 g xylose (g biomass)(-1) h(-1). Mixtures of glucose and xylose were sequentially but completely consumed by anaerobic batch cultures, with glucose as the preferred substrate. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:399 / 409
页数:11
相关论文
共 50 条
[11]   The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae [J].
Gárdonyi, M ;
Hahn-Hägerdal, B .
ENZYME AND MICROBIAL TECHNOLOGY, 2003, 32 (02) :252-259
[12]  
Gietz RD, 2002, METHOD ENZYMOL, V350, P87
[13]  
Goldstein AL, 1999, YEAST, V15, P1541, DOI 10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO
[14]  
2-K
[15]   A new efficient gene disruption cassette for repeated use in budding yeast [J].
Guldener, U ;
Heck, S ;
Fiedler, T ;
Beinhauer, J ;
Hegemann, JH .
NUCLEIC ACIDS RESEARCH, 1996, 24 (13) :2519-2524
[16]   ETHANOLIC FERMENTATION OF PENTOSES IN LIGNOCELLULOSE HYDROLYSATES [J].
HAHNHAGERDAL, B ;
LINDEN, T ;
SENAC, T ;
SKOOG, K .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1991, 28-9 :131-144
[17]   Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization [J].
Hamacher, T ;
Becker, J ;
Gárdonyi, M ;
Hahn-Hägerdal, B ;
Boles, E .
MICROBIOLOGY-SGM, 2002, 148 :2783-2788
[18]   Xylose metabolism in the anaerobic fungus Piromyces sp strain E2 follows the bacterial pathway [J].
Harhangi, HR ;
Akhmanova, AS ;
Emmens, R ;
van der Drift, C ;
de Laat, WTAM ;
van Dijken, JP ;
Jetten, MSM ;
Pronk, JT ;
den Camp, HJMO .
ARCHIVES OF MICROBIOLOGY, 2003, 180 (02) :134-141
[19]  
HO NWY, 1983, BIOTECHNOL BIOENG S, V13, P245
[20]   HIGH-EFFICIENCY TRANSFORMATION OF ESCHERICHIA-COLI WITH PLASMIDS [J].
INOUE, H ;
NOJIMA, H ;
OKAYAMA, H .
GENE, 1990, 96 (01) :23-28