Xylose metabolism in the anaerobic fungus Piromyces sp strain E2 follows the bacterial pathway

被引:98
作者
Harhangi, HR
Akhmanova, AS
Emmens, R
van der Drift, C
de Laat, WTAM
van Dijken, JP
Jetten, MSM
Pronk, JT
den Camp, HJMO
机构
[1] Catholic Univ Nijmegen, Fac Sci, Dept Microbiol, NL-6525 ED Nijmegen, Netherlands
[2] Royal Nedalco BV, NL-4600 AA Bergen Op Zoom, Netherlands
[3] Delft Univ Technol, Kluyver Lab Biotechnol, NL-2628 BC Delft, Netherlands
关键词
xylose isomerase; D-Xylulokinase; phylogeny; chytrid fungus; Piromyces;
D O I
10.1007/s00203-003-0565-0
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The anaerobic fungus Piromyces sp. strain E2 metabolizes xylose via xylose isomerase and D-xylulokinase as was shown by enzymatic and molecular analyses. This resembles the situation in bacteria. The clones encoding the two enzymes were obtained from a cDNA library. The xylose isomerase gene sequence is the first gene of this type reported for a fungus. Nor-them blot analysis revealed a correlation between mRNA and enzyme activity levels on different growth substrates. Furthermore, the molecular mass calculated from the gene sequence was confirmed by gel permeation chromatography of crude extracts followed by activity measurements. Deduced amino acid sequences of both genes were used for phylogenetic analysis. The xylose isomerases can be divided into two distinct clusters. The Piromyces sp. strain E2 enzyme falls into the cluster comprising plant enzymes and enzymes from bacteria with a low G+C content in their DNA. The D-xylulokinase of Piromyces sp. strain E2 clusters with the bacterial D-Xylulokinases. The xylose isomerase gene was expressed in the yeast Saccharomyces cerevisiae, resulting in a low activity (25 13 nmol min(-1)mg protein(-1)). These two fungal genes may be applicable to metabolic engineering of Saccharomyces cerevisiae for the alcoholic fermentation of hemicellulosic materials.
引用
收藏
页码:134 / 141
页数:8
相关论文
共 46 条
[1]   A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism [J].
Akhmanova, A ;
Voncken, FGJ ;
Hosea, KM ;
Harhangi, H ;
Keltjens, JT ;
den Camp, HJMO ;
Vogels, GD ;
Hackstein, JHP .
MOLECULAR MICROBIOLOGY, 1999, 32 (05) :1103-1114
[2]   Cytosolic enzymes with a mitochondrial ancestry from the anaerobic chytrid Piromyces sp. E2 [J].
Akhmanova, A ;
Voncken, FGJ ;
Harhangi, H ;
Hosea, KM ;
Vogels, GD ;
Hackstein, JHP .
MOLECULAR MICROBIOLOGY, 1998, 30 (05) :1017-1027
[3]   THE FERMENTATION OF XYLOSE - AN ANALYSIS OF THE EXPRESSION OF BACILLUS AND ACTINOPLANES XYLOSE ISOMERASE GENES IN YEAST [J].
AMORE, R ;
WILHELM, M ;
HOLLENBERG, CP .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1989, 30 (04) :351-357
[4]   XYLOSE METABOLISM IN A THERMOPHILIC MOLD MALBRANCHEA-PULCHELLA VAR SULFUREA TMD-8 [J].
BANERJEE, S ;
ARCHANA, A ;
SATYANARAYANA, T .
CURRENT MICROBIOLOGY, 1994, 29 (06) :349-352
[5]   FERMENTATION PRODUCTS AND PLANT-CELL WALL-DEGRADING ENZYMES PRODUCED BY MONOCENTRIC AND POLYCENTRIC ANAEROBIC RUMINAL FUNGI [J].
BORNEMAN, WS ;
AKIN, DE ;
LJUNGDAHL, LG .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1989, 55 (05) :1066-1073
[6]  
BROWNLEE AG, 1994, ANAEROBIC FUNGI BIOL, P241
[7]   THE ROLE OF REDOX BALANCES IN THE ANAEROBIC FERMENTATION OF XYLOSE BY YEASTS [J].
BRUINENBERG, PM ;
DEBOT, PHM ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
EUROPEAN JOURNAL OF APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1983, 18 (05) :287-292
[8]   NADH-LINKED ALDOSE REDUCTASE - THE KEY TO ANAEROBIC ALCOHOLIC FERMENTATION OF XYLOSE BY YEASTS [J].
BRUINENBERG, PM ;
DEBOT, PHM ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1984, 19 (04) :256-260
[9]   ISOLATION OF BIOLOGICALLY-ACTIVE RIBONUCLEIC-ACID FROM SOURCES ENRICHED IN RIBONUCLEASE [J].
CHIRGWIN, JM ;
PRZYBYLA, AE ;
MACDONALD, RJ ;
RUTTER, WJ .
BIOCHEMISTRY, 1979, 18 (24) :5294-5299
[10]   Comparison of the genomes of two Xanthomonas pathogens with differing host specificities [J].
A. C. R. da Silva ;
J. A. Ferro ;
F. C. Reinach ;
C. S. Farah ;
L. R. Furlan ;
R. B. Quaggio ;
C. B. Monteiro-Vitorello ;
M. A. Van Sluys ;
N. F. Almeida ;
L. M. C. Alves ;
A. M. do Amaral ;
M. C. Bertolini ;
L. E. A. Camargo ;
G. Camarotte ;
F. Cannavan ;
J. Cardozo ;
F. Chambergo ;
L. P. Ciapina ;
R. M. B. Cicarelli ;
L. L. Coutinho ;
J. R. Cursino-Santos ;
H. El-Dorry ;
J. B. Faria ;
A. J. S. Ferreira ;
R. C. C. Ferreira ;
M. I. T. Ferro ;
E. F. Formighieri ;
M. C. Franco ;
C. C. Greggio ;
A. Gruber ;
A. M. Katsuyama ;
L. T. Kishi ;
R. P. Leite ;
E. G. M. Lemos ;
M. V. F. Lemos ;
E. C. Locali ;
M. A. Machado ;
A. M. B. N. Madeira ;
N. M. Martinez-Rossi ;
E. C. Martins ;
J. Meidanis ;
C. F. M. Menck ;
C. Y. Miyaki ;
D. H. Moon ;
L. M. Moreira ;
M. T. M. Novo ;
V. K. Okura ;
M. C. Oliveira ;
V. R. Oliveira ;
H. A. Pereira .
Nature, 2002, 417 (6887) :459-463