On local invariants of pure three-qubit states

被引:109
作者
Sudbery, A [1 ]
机构
[1] Univ York, Dept Math, York YO1 5DD, N Yorkshire, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 03期
关键词
D O I
10.1088/0305-4470/34/3/323
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study invariants of three-qubit states under local unitary transformations, i.e. functions on the space of entanglement types, which is known to have dimension six. We show that there is no set of six algebraically independent polynomial invariants of degree less than or equal to 6, and find such a set with maximum degree eight. We describe an intrinsic definition of a canonical state on each orbit, and discuss the (non-polynomial) invariants associated with it.
引用
收藏
页码:643 / 652
页数:10
相关论文
共 26 条
[11]  
GRASSL M, 1997, QUANTPH9712040
[12]   Multiparticle entanglement and its applications to cryptography [J].
Kempe, J .
PHYSICAL REVIEW A, 1999, 60 (02) :910-916
[13]  
KEMPE J, 1999, QUANTPH9902036
[14]   Nonlocal parameters for multiparticle density matrices [J].
Linden, N ;
Popescu, S ;
Sudbery, A .
PHYSICAL REVIEW LETTERS, 1999, 83 (02) :243-247
[15]  
Linden N, 1998, FORTSCHR PHYS, V46, P567, DOI 10.1002/(SICI)1521-3978(199806)46:4/5<567::AID-PROP567>3.0.CO
[16]  
2-H
[17]  
LINDEN N, 1997, QUANTPH9711016
[18]  
LINDEN N, 1998, QUANTPH9801076
[19]  
MAKHLIN Y, 2000, QUANTPH0002045
[20]   Polynomial invariants of quantum codes [J].
Rains, EM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (01) :54-59