Braided nodal lines in wave superpositions

被引:27
作者
Dennis, MR [1 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
来源
NEW JOURNAL OF PHYSICS | 2003年 / 5卷
关键词
D O I
10.1088/1367-2630/5/1/134
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nodal lines ( phase singularities, optical vortices) are the generic interference fringes of complex scalar waves. Here, an exact complex solution of the time-independent wave equation ( Helmholtz equation) is considered, possessing nodal lines which are braided in the form of a borromean, or pigtail braid. The braid field is a superposition of counterpropagating, counterrotating, non-coaxial third-order Bessel beams and a plane wave whose propagation is perpendicular to that of the beams. The construction is structurally stable, and can be generalized to a limited class of other braids.
引用
收藏
页码:134.1 / 134.8
页数:8
相关论文
共 20 条
[1]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[2]   Hamiltonian dynamics generated by Vassiliev invariants [J].
Berger, MA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (07) :1363-1374
[3]   Much ado about nothing: optical dislocation lines (phase singularities, zeros, vortices ...) [J].
Berry, M .
INTERNATIONAL CONFERENCE ON SINGULAR OPTICS, 1998, 3487 :1-5
[4]   Knotted zeros in the quantum states of hydrogen [J].
Berry, M .
FOUNDATIONS OF PHYSICS, 2001, 31 (04) :659-667
[5]   Phase singularities in isotropic random waves [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (2001) :2059-2079
[6]   Knotting and unknotting of phase singularities: Helmholtz waves, paraxial waves and waves in 2+1 spacetime [J].
Berry, MV ;
Dennis, MR .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (42) :8877-8888
[7]   Knotted and linked phase singularities in monochromatic waves [J].
Berry, MV ;
Dennis, MR .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2001, 457 (2013) :2251-2263
[9]   DIFFRACTION-FREE BEAMS [J].
DURNIN, J ;
MICELI, JJ ;
EBERLY, JH .
PHYSICAL REVIEW LETTERS, 1987, 58 (15) :1499-1501
[10]   EXACT-SOLUTIONS FOR NONDIFFRACTING BEAMS .1. THE SCALAR THEORY [J].
DURNIN, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1987, 4 (04) :651-654