Combining hydrophobicity and helicity: A novel approach to membrane protein structure prediction

被引:53
作者
Liu, LP
Deber, CM
机构
[1] Hosp Sick Children, Res Inst, Div Struct Biol & Biochem, Toronto, ON M5G 1X8, Canada
[2] Univ Toronto, Dept Biochem, Toronto, ON M5G 1X8, Canada
基金
加拿大自然科学与工程研究理事会; 英国医学研究理事会;
关键词
membrane proteins; transmembrane segments; predictive analysis; hydrophobicity; helix propensity;
D O I
10.1016/S0968-0896(98)00233-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In spite of the overwhelming numbers and critical biological functions of membrane proteins, only a few have been characterized by high-resolution structural techniques. From the structures that are known, it is seen that their transmembrane (TM) segments tend to fold most often into alpha-helices. To evaluate systematically the features of these TM segments, we have taken two approaches: (1) using the experimentally-measured residence behavior of specifically designed hydrophobic peptides in RP-HPLC, a scale was derived based directly on the properties of individual amino acids incorporated into membrane-interactive helices; and (2) the relative alpha-helical propensity of each of the 20 amino acids was measured in the organic non-polar environment of n-butanol. By combining the resulting hydrophobicity and helical propensity data, in conjunction with consideration of the 'threshold hydrophobicity' required for spontaneous membrane integration of protein segments, an approach was developed for prediction of TM segments wherein each must fulfill the dual requirements of hydrophobicity and helicity. Evaluated against the available high-resolution structural data on membrane proteins, the present combining method is shown to provide accurate predictions for the locations of TM helices. In contrast, no segment in soluble proteins was predicted as a 'TM helix'. (C) 1999 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 59 条
[21]  
HORATH CS, 1976, J CHROMATOGR, V125, P129
[22]   THE CRYSTAL-STRUCTURE OF STAPHYLOCOCCAL NUCLEASE REFINED AT 1.7 A RESOLUTION [J].
HYNES, TR ;
FOX, RO .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1991, 10 (02) :92-105
[23]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF CYTOCHROME-C-OXIDASE FROM PARACOCCUS-DENITRIFICANS [J].
IWATA, S ;
OSTERMEIER, C ;
LUDWIG, B ;
MICHEL, H .
NATURE, 1995, 376 (6542) :660-669
[24]   A MODEL RECOGNITION APPROACH TO THE PREDICTION OF ALL-HELICAL MEMBRANE-PROTEIN STRUCTURE AND TOPOLOGY [J].
JONES, DT ;
TAYLOR, WR ;
THORTON, JM .
BIOCHEMISTRY, 1994, 33 (10) :3038-3049
[25]   CONFORMATIONAL PREFERENCE FUNCTIONS FOR PREDICTING HELICES IN MEMBRANE-PROTEINS [J].
JURETIC, D ;
LEE, B ;
TRINAJSTIC, N ;
WILLIAMS, RW .
BIOPOLYMERS, 1993, 33 (02) :255-273
[26]   CRYSTAL-STRUCTURE OF THIOREDOXIN FROM ESCHERICHIA-COLI AT 1.68A RESOLUTION [J].
KATTI, SK ;
LEMASTER, DM ;
EKLUND, H .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 212 (01) :167-184
[27]   The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum [J].
Koepke, J ;
Hu, XC ;
Muenke, C ;
Schulten, K ;
Michel, H .
STRUCTURE, 1996, 4 (05) :581-597
[28]   Photosystem I at 4 angstrom resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna, system [J].
Krauss, N ;
Schubert, WD ;
Klukas, O ;
Fromme, P ;
Witt, HT ;
Saenger, W .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (11) :965-973
[29]   ATOMIC MODEL OF PLANT LIGHT-HARVESTING COMPLEX BY ELECTRON CRYSTALLOGRAPHY [J].
KUHLBRANDT, W ;
WANG, DN ;
FUJIYOSHI, Y .
NATURE, 1994, 367 (6464) :614-621
[30]   A SIMPLE METHOD FOR DISPLAYING THE HYDROPATHIC CHARACTER OF A PROTEIN [J].
KYTE, J ;
DOOLITTLE, RF .
JOURNAL OF MOLECULAR BIOLOGY, 1982, 157 (01) :105-132