Electrostatic interactions between graphene layers and their environment

被引:125
作者
Sabio, J. [1 ]
Seoanez, C. [1 ]
Fratini, S. [1 ,2 ,3 ]
Guinea, F. [1 ]
Castro Neto, A. H. [4 ]
Sols, F. [5 ]
机构
[1] CSIC, Inst Ciencia Mat, E-28049 Madrid, Spain
[2] CNRS, Inst Neel, F-38042 Grenoble 9, France
[3] Univ Grenoble 1, F-38042 Grenoble 9, France
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
[5] Univ Complutense Madrid, Dept Fis Mat, E-28040 Madrid, Spain
关键词
D O I
10.1103/PhysRevB.77.195409
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the electrostatic interactions between a single graphene layer and a SiO2 substrate, and other materials which may exist in its environment. We obtain that the leading effects arise from the polar modes at the SiO2 surface, and water molecules, which may form layers between the graphene sheet and the substrate. The strength of the interactions implies that graphene is pinned to the substrate at distances greater than a few lattice spacings. The implications for graphene nanoelectromechanical systems, and for the interaction between graphene and a scanning tunneling microscopy tip, are also considered.
引用
收藏
页数:8
相关论文
共 50 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Non-Hermitian Luttinger liquids and flux line pinning in planar superconductors -: art. no. P10003 [J].
Affleck, I ;
Hofstetter, W ;
Nelson, DR ;
Shollwöck, U .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[3]   Observation of molecular layering in a confined water film and study of the layers viscoelastic properties [J].
Antognozzi, M ;
Humphris, ADL ;
Miles, MJ .
APPLIED PHYSICS LETTERS, 2001, 78 (03) :300-302
[4]   A STUDY OF GRAPHITE SURFACE WITH STM AND ELECTRONIC-STRUCTURE CALCULATIONS [J].
BATRA, IP ;
GARCIA, N ;
ROHRER, H ;
SALEMINK, H ;
STOLL, E ;
CIRACI, S .
SURFACE SCIENCE, 1987, 181 (1-2) :126-138
[5]   Microscopic determination of the interlayer binding energy in graphite [J].
Benedict, LX ;
Chopra, NG ;
Cohen, ML ;
Zettl, A ;
Louie, SG ;
Crespi, VH .
CHEMICAL PHYSICS LETTERS, 1998, 286 (5-6) :490-496
[6]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[7]  
Bolotin K.I., ARXIV08022389
[8]  
Botehlo do Rego A. M., 2001, HDB SURFACES INTERFA, VII, P275, DOI [DOI 10.1016/B978-012513910-6/50026-8, 10.1016/S1079-4042, DOI 10.1016/S1079-4042]
[9]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[10]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162