Improved cellular uptake of functionalized single-walled carbon nanotubes

被引:49
作者
Antonelli, A. [1 ]
Serafini, S. [1 ]
Menotta, M. [1 ]
Sfara, C. [1 ]
Pierige, F. [1 ]
Giorgi, L. [2 ]
Ambrosi, G. [2 ]
Rossi, L. [1 ]
Magnani, M. [1 ]
机构
[1] Univ Urbino Carlo Bo, Dept Biomol Sci, I-61029 Urbino, PU, Italy
[2] Univ Urbino Carlo Bo, Dept Math Phys & Informat, I-61029 Urbino, PU, Italy
关键词
IN-VITRO; INTERNALIZATION; TRANSPORTERS; DNA; PHAGOCYTOSIS; MECHANISM; MEMBRANE; SIZE;
D O I
10.1088/0957-4484/21/42/425101
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Single-walled carbon nanotubes (SWNTs) due to their unique structural and physicochemical properties, have been proposed as delivery systems for a variety of diagnostic and therapeutic agents. However, SWNTs have proven difficult to solubilize in aqueous solution, limiting their use in biological applications. In an attempt to improve SWNTs' solubility, biocompatibility, and to increase cell penetration we have thoroughly investigated the construction of carbon scaffolds coated with aliphatic carbon chains and phospholipids to obtain micelle-like structures. At first, oxidized SWNTs (2370 +/- 30 nmol mg(-1) of SWNTs) were covalently coupled with an alcoholic chain (stearyl alcohol, C18H37OH; 816 nmol mg(-1) of SWNTs). Subsequently, SWNTs-COOC18H37 derivatives were coated with phosphatidylethanolamine (PE) or -serine (PS) phospholipids obtaining micelle-like structures. We found that cellular uptake of these constructs by phagocytic cells occurs via an endocytotic mechanism for constructs larger than 400 nm while occurs via diffusion through the cell membrane for constructs up to 400 nm. The material that enters the cell by phagocytosis is actively internalized by macrophages and localizes inside endocytotic vesicles. In contrast the material that enters the cells by diffusion is found in the cell cytosol. In conclusion, we have realized new biomimetic constructs based on alkylated SWNTs coated with phospholipids that are efficiently internalized by different cell types only if their size is lower than 400 nm. These constructs are not toxic to the cells and could now be explored as delivery systems for non-permeant cargoes.
引用
收藏
页数:14
相关论文
共 35 条
[1]   Differential use of endoplasmic reticulum membrane for phagocytosis in J774 macrophages [J].
Becker, T ;
Volchuk, A ;
Rothman, JE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (11) :4022-4026
[2]   Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties [J].
Bianco, A ;
Hoebeke, J ;
Godefroy, S ;
Chaloin, O ;
Pantarotto, D ;
Briand, JP ;
Muller, S ;
Prato, M ;
Partidos, CD .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (01) :58-59
[3]   Biomedical applications of functionalised carbon nanotubes [J].
Bianco, A ;
Kostarelos, K ;
Partidos, CD ;
Prato, M .
CHEMICAL COMMUNICATIONS, 2005, (05) :571-577
[4]   Applications of carbon nanotubes in drug delivery [J].
Bianco, A ;
Kostarelos, K ;
Prato, M .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (06) :674-679
[5]   Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors [J].
Chen, RJ ;
Bangsaruntip, S ;
Drouvalakis, KA ;
Kam, NWS ;
Shim, M ;
Li, YM ;
Kim, W ;
Utz, PJ ;
Dai, HJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (09) :4984-4989
[6]   Interfacing carbon nanotubes with living cells [J].
Chen, Xing ;
Tam, Un Chong ;
Czlapinski, Jennifer L. ;
Lee, Goo Soo ;
Rabuka, David ;
Zettl, Alex ;
Bertozzi, Carolyn R. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (19) :6292-6293
[7]   Protein microarrays with carbon nanotubes as multicolor Raman labels [J].
Chen, Zhuo ;
Tabakman, Scott M. ;
Goodwin, Andrew P. ;
Kattah, Michael G. ;
Daranciang, Dan ;
Wang, Xinran ;
Zhang, Guangyu ;
Li, Xiaolin ;
Liu, Zhuang ;
Utz, Paul J. ;
Jiang, Kaili ;
Fan, Shoushan ;
Dai, Hongjie .
NATURE BIOTECHNOLOGY, 2008, 26 (11) :1285-1292
[8]   Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells [J].
Cherukuri, P ;
Bachilo, SM ;
Litovsky, SH ;
Weisman, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (48) :15638-15639
[9]   Carbon nanotubes as photoacoustic molecular imaging agents in living mice [J].
De La Zerda, Adam ;
Zavaleta, Cristina ;
Keren, Shay ;
Vaithilingam, Srikant ;
Bodapati, Sunil ;
Liu, Zhuang ;
Levi, Jelena ;
Smith, Bryan R. ;
Ma, Te-Jen ;
Oralkan, Omer ;
Cheng, Zhen ;
Chen, Xiaoyuan ;
Dai, Hongjie ;
Khuri-Yakub, Butrus T. ;
Gambhir, Sanjiv S. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :557-562
[10]   Endoplasmic reticulum-mediated phagocytosis is a mechanism of entry into macrophages [J].
Gagnon, E ;
Duclos, S ;
Rondeau, C ;
Chevet, E ;
Cameron, PH ;
Steele-Mortimer, O ;
Paiement, J ;
Bergeron, JJM ;
Desjardins, M .
CELL, 2002, 110 (01) :119-131