共 75 条
Identification of a novel RING finger protein as a coregulator in steroid receptor-mediated gene transcription
被引:178
作者:
Moilanen, AM
Poukka, H
Karvonen, U
Häkli, M
Jänne, OA
Palvimo, JJ
机构:
[1] Univ Helsinki, Inst Biomed, Dept Physiol, FIN-00014 Helsinki, Finland
[2] Univ Helsinki, Dept Clin Chem, FIN-00014 Helsinki, Finland
关键词:
D O I:
10.1128/MCB.18.9.5128
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Using the DNA-binding domain of androgen receptor (AR) as a bait in a yeast two-hybrid screening, we have identified a small nuclear RING finger protein, termed SNURF, that interacts with AR in a hormone-dependent fashion in both yeast and mammalian cells. Physical interaction between AR and SNURF was demonstrated by coimmunoprecipitation from cell extracts and by protein-protein affinity chromatography. Rat SNURF is a highly hydrophilic protein consisting of 194 amino acid residues and comprising a consensus C3HC4 zinc finger (RING) structure in the C-terminal region and a bipartite nuclear localization signal near the N terminus. Immunohistochemical experiments indicated that SNURF is a nuclear protein. SNURF mRNA is expressed in a variety of human and rat tissues. Overexpression of SNURF in cultured mammalian cells enhanced not only androgen, glucocorticoid, and progesterone receptor-dependent transactivation but also basal transcription from steroid-regulated promoters. Mutation of two of the potential Zn2+ coordinating cysteines to serines in the RING finger completely abolished the ability of SNURF to enhance basal transcription, whereas its ability to activate steroid receptor-dependent transcription was maintained, suggesting that there are separate domains in SNURF that mediate interactions with different regulatory factors. SNURF is capable of interacting in vitro with the TATA-binding protein, and the RING finger domain is needed for this interaction. Collectively, we have identified and characterized a ubiquitously expressed RING finger protein, SNURF, that may function as a bridging factor and regulate steroid receptor-dependent transcription by a mechanism different from those of previously identified coactivator or integrator proteins.
引用
收藏
页码:5128 / 5139
页数:12
相关论文