Multiscale testing of qualitative hypotheses

被引:122
作者
Dümbgen, L
Spokoiny, VG
机构
[1] Med Univ Lubeck, Inst Math, D-23560 Lubeck, Germany
[2] Karl Weierstrass Inst Math, D-10117 Berlin, Germany
关键词
adaptivity; concavity; Levy's modulus of continuity; monotonicity; multiple test; nonparametric; positivity;
D O I
10.1214/aos/996986504
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Suppose that one observes a process Y on the unit interval, where dY(t) = n(1/2)f(t) dt + dW (t) with an unknown function parameter f, given scale parameter n greater than or equal to 1 ("sample size") and standard Brownian motion W. We propose two classes of tests of qualitative nonparametric hypotheses about f such as monotonicity or concavity. These tests are asymptotically optimal and adaptive in a certain sense. They are constructed via a new class of multiscale statistics and an extension of Levy's modulus of continuity of Brownian motion.
引用
收藏
页码:124 / 152
页数:29
相关论文
共 35 条
[1]  
Brown LD, 1996, ANN STAT, V24, P2384
[2]   SiZer for exploration of structures in curves [J].
Chaudhuri, P ;
Marron, JS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (447) :807-823
[3]  
Cheng MY, 1999, ANN STAT, V27, P1294
[4]   RENORMALIZATION EXPONENTS AND OPTIMAL POINTWISE RATES OF CONVERGENCE [J].
DONOHO, DL ;
LOW, MG .
ANNALS OF STATISTICS, 1992, 20 (02) :944-970
[5]   ASYMPTOTIC MINIMAX RISK FOR SUP-NORM LOSS - SOLUTION VIA OPTIMAL RECOVERY [J].
DONOHO, DL .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 99 (02) :145-170
[6]   STATISTICAL ESTIMATION AND OPTIMAL RECOVERY [J].
DONOHO, DL .
ANNALS OF STATISTICS, 1994, 22 (01) :238-270
[7]  
DUMBGEN L, 1998, APPL LOCAL RANK TEST
[8]  
DUMBGEN L, 2000, OPTIMAL CONFIDENCE B
[9]   MINIMAX DETECTION OF A SIGNAL IN A GAUSSIAN WHITE-NOISE [J].
ERMAKOV, MS .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1990, 35 (04) :667-679
[10]   TESTING GOODNESS-OF-FIT IN REGRESSION VIA ORDER SELECTION CRITERIA [J].
EUBANK, RL ;
HART, JD .
ANNALS OF STATISTICS, 1992, 20 (03) :1412-1425