Drought tolerance through biotechnology: improving translation from the laboratory to farmers' fields

被引:116
作者
Deikman, Jill [2 ]
Petracek, Marie [3 ]
Heard, Jacqueline E. [1 ]
机构
[1] Monsanto Co, Cambridge, MA 02141 USA
[2] Monsanto Co, Davis, CA 95616 USA
[3] Monsanto Co, Chesterfield, MO 63017 USA
关键词
ABIOTIC STRESS TOLERANCE; ABSCISIC-ACID SIGNAL; SALT TOLERANCE; GRAIN-YIELD; AGRICULTURAL BIOTECHNOLOGY; RESPONSIVE MICRORNAS; REGULATES DROUGHT; DOWN-REGULATION; FOOD SECURITY; RICE;
D O I
10.1016/j.copbio.2011.11.003
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Water availability is a significant constraint to crop production, and increasing drought tolerance of crops is one step to gaining greater yield stability. Excellent progress has been made using models to identify pathways and genes that can be manipulated through biotechnology to improve drought tolerance. A current focus is on translation of results from models in controlled environments to crops in the field. Field testing to demonstrate improved yields under water-limiting conditions is challenging and expensive. More extensive phenotyping of transgenic lines in the greenhouse may contribute to improved predictions about field performance. It is possible that multiple mechanisms of drought tolerance may be needed to provide benefit across the diversity of water stress environments relevant to economic yield.
引用
收藏
页码:243 / 250
页数:8
相关论文
共 84 条
[51]   Cytokinin-mediated source/sink modifications improve drought tolerance and increase grain yield in rice under water-stress [J].
Peleg, Zvi ;
Reguera, Maria ;
Tumimbang, Ellen ;
Walia, Harkamal ;
Blumwald, Eduardo .
PLANT BIOTECHNOLOGY JOURNAL, 2011, 9 (07) :747-758
[52]   Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance [J].
Quan, Ruidang ;
Hu, Shoujing ;
Zhang, Zhili ;
Zhang, Haiwen ;
Zhang, Zhijin ;
Huang, Rongfeng .
PLANT BIOTECHNOLOGY JOURNAL, 2010, 8 (04) :476-488
[53]  
Reuzeau C, 2010, PLANT GENE TRAIT, V1, DOI [10.5376/pgt.2010.5301.0001, DOI 10.5376/PGT.2010.5301.0001]
[54]   OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice [J].
Seo, Ju-Seok ;
Joo, Joungsu ;
Kim, Min-Jeong ;
Kim, Yeon-Ki ;
Nahm, Baek Hie ;
Song, Sang Ik ;
Cheong, Jong-Joo ;
Lee, Jong Seob ;
Kim, Ju-Kon ;
Do Choi, Yang .
PLANT JOURNAL, 2011, 65 (06) :907-921
[55]   Survival and growth of Arabidopsis plants given limited water are not equal [J].
Skirycz, Aleksandra ;
Vandenbroucke, Korneel ;
Clauw, Pieter ;
Maleux, Katrien ;
De Meyer, Bjorn ;
Dhondt, Stijn ;
Pucci, Anna ;
Gonzalez, Nathalie ;
Hoeberichts, Frank ;
Tognetti, Vanesa B. ;
Galbiati, Massimo ;
Tonelli, Chiara ;
Van Breusegem, Frank ;
Vuylsteke, Marnik ;
Inze, Dirk .
NATURE BIOTECHNOLOGY, 2011, 29 (03) :212-214
[56]   Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress [J].
Song, Shi-Yong ;
Chen, Ying ;
Chen, Jie ;
Dai, Xiao-Yan ;
Zhang, Wen-Hao .
PLANTA, 2011, 234 (02) :331-345
[57]   The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice [J].
Takasaki, Hironori ;
Maruyama, Kyonoshin ;
Kidokoro, Satoshi ;
Ito, Yusuke ;
Fujita, Yasunari ;
Shinozaki, Kazuo ;
Yamaguchi-Shinozaki, Kazuko ;
Nakashima, Kazuo .
MOLECULAR GENETICS AND GENOMICS, 2010, 284 (03) :173-183
[58]   Dissection and modelling of abiotic stress tolerance in plants [J].
Tardieu, Francois ;
Tuberosa, Roberto .
CURRENT OPINION IN PLANT BIOLOGY, 2010, 13 (02) :206-212
[59]   Drought-tolerant maize gets US debut [J].
Tollefson, Jeff .
NATURE, 2011, 469 (7329) :144-144
[60]   Yield potential, yield stability and stress tolerance in maize [J].
Tollenaar, M ;
Lee, EA .
FIELD CROPS RESEARCH, 2002, 75 (2-3) :161-169