Identifying subtle interrelated changes in functional gene categories using continuous measures of gene expression

被引:48
作者
Ben-Shaul, Y
Bergman, H
Soreq, H [1 ]
机构
[1] Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Biol Chem, Inst Life Sci, IL-91904 Jerusalem, Israel
[2] Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, IL-91904 Jerusalem, Israel
[3] Hebrew Univ Jerusalem, Hadassah Med Sch, Ctr Computat Neurosci, IL-91904 Jerusalem, Israel
[4] Hebrew Univ Jerusalem, Hadassah Med Sch, Eric Roland Ctr Neurodegenerat Dis, IL-91904 Jerusalem, Israel
基金
以色列科学基金会;
关键词
D O I
10.1093/bioinformatics/bti149
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Analysis of large-scale expression data is greatly facilitated by the availability of gene ontologies (GOs). Many current methods test whether sets of transcripts annotated with specific ontology terms contain an excess of 'changed' transcripts. This approach suffers from two main limitations. First, since gene expression is continuous rather than discrete, designating a gene as changed or unchanged is arbitrary and oblivious to the actual magnitude of the change. Second, by considering only the number of changed genes, finer changes in expression patterns associated with the category may be ignored. Since genes generally participate in multiple networks, widespread and subtle modifications in expression patterns are at least as important as extreme increases/decreases of a few genes. Results: Numerical simulations confirm that incorporating continuous measures of gene expression for all measured transcripts yields detection of considerably more subtle changes. Applying continuous measures to microarray data from brains of mice injected with the Parkinsonian neurotoxin, MPTP, enables detection of changes in various biologically relevant GO terms, many of which are overlooked by discrete approaches.
引用
收藏
页码:1129 / 1137
页数:9
相关论文
共 18 条
  • [1] FatiGO:: a web tool for finding significant associations of Gene Ontology terms with groups of genes
    Al-Shahrour, F
    Díaz-Uriarte, R
    Dopazo, J
    [J]. BIOINFORMATICS, 2004, 20 (04) : 578 - 580
  • [2] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [3] GOstat: find statistically overrepresented Gene Ontologies within a group of genes
    Beissbarth, T
    Speed, TP
    [J]. BIOINFORMATICS, 2004, 20 (09) : 1464 - 1465
  • [4] HnRNP K: One protein multiple processes
    Bomsztyk, K
    Denisenko, O
    Ostrowski, J
    [J]. BIOESSAYS, 2004, 26 (06) : 629 - 638
  • [5] FANTOM DB: Database of functional annotation of RIKEN mouse cDNA clones
    Bono, H
    Kasukawa, T
    Furuno, M
    Hayashizaki, Y
    Okazaki, Y
    [J]. NUCLEIC ACIDS RESEARCH, 2002, 30 (01) : 116 - 118
  • [6] Computational perspectives on dopamine function in prefrontal cortex - Commentary
    Cohen, J
    Braver, TS
    Brown, JW
    [J]. CURRENT OPINION IN NEUROBIOLOGY, 2002, 12 (02) : 223 - 229
  • [7] Damian D, 2004, NAT GENET, V36, P663, DOI 10.1038/ng0704-663a
  • [8] Parkinson's disease: Mechanisms and models
    Dauer, W
    Przedborski, S
    [J]. NEURON, 2003, 39 (06) : 889 - 909
  • [9] Identifying biological themes within lists of genes with EASE
    Hosack, DA
    Dennis, G
    Sherman, BT
    Lane, HC
    Lempicki, RA
    [J]. GENOME BIOLOGY, 2003, 4 (10)
  • [10] NetAffx: Affymetrix probesets and annotations
    Liu, GY
    Loraine, AE
    Shigeta, R
    Cline, M
    Cheng, J
    Valmeekam, V
    Sun, S
    Kulp, D
    Siani-Rose, MA
    [J]. NUCLEIC ACIDS RESEARCH, 2003, 31 (01) : 82 - 86