Production of graphene from graphite oxide using urea as expansion-reduction agent

被引:177
作者
Wakeland, Stephen [1 ]
Martinez, Ricardo [1 ]
Grey, John K. [2 ]
Luhrs, Claudia C. [1 ]
机构
[1] Univ New Mexico, Dept Mech Engn, Albuquerque, NM 87131 USA
[2] Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA
基金
美国国家科学基金会;
关键词
THERMAL-DECOMPOSITION PYROLYSIS; FUNCTIONALIZED GRAPHENE; ELECTRICAL-PROPERTIES; FACILE SYNTHESIS; SHEETS; NANOPLATELETS; COMPOSITES; NANOSHEETS; OXIDATION; VAPOR;
D O I
10.1016/j.carbon.2010.05.043
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene sheets were produced from graphite oxide using a simple two-step process. First, graphite oxide (GO) is well mixed with an expansion reduction agent, such as urea, that decomposes upon heating to release reducing gases. Second, the mix is heated in an inert gas environment (e.g. N-2) for a very short time to a moderate temperature (ca. 600 degrees C). Reaction temperature selection should be consistent with the decomposition temperature of the expansion reduction agent. Upon cooling, graphene can readily be collected as the solid byproduct. Graphene samples were characterized by XRD, TEM, EELS, SEM, Raman Spectroscopy and the GO and urea mixtures decomposition-reduction process studied by TGA/DSC analysis. This graphene generation process is rapid, inexpensive and easy to scale up. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3463 / 3470
页数:8
相关论文
共 41 条
[1]   Functionalized Graphene Sheet-Poly(vinylidene fluoride) Conductive Nanocomposites [J].
Ansari, Seema ;
Giannelis, Emmanuel P. .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2009, 47 (09) :888-897
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Carbon-Based Field-Effect Transistors for Nanoelectronics [J].
Burghard, Marko ;
Klauk, Hagen ;
Kern, Klaus .
ADVANCED MATERIALS, 2009, 21 (25-26) :2586-2600
[4]   Dynamic mechanical and thermal properties of phenylethynyl-terminated polyimide composites reinforced with expanded graphite nanoplatelets [J].
Cho, D ;
Lee, S ;
Yang, GM ;
Fukushima, H ;
Drzal, LT .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2005, 290 (03) :179-187
[5]   Substrate-free gas-phase synthesis of graphene sheets [J].
Dato, Albert ;
Radmilovic, Velimir ;
Lee, Zonghoon ;
Phillips, Jonathan ;
Frenklach, Michael .
NANO LETTERS, 2008, 8 (07) :2012-2016
[6]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[7]   Urea thermolsis and NOx reduction with and without SCR catalysts [J].
Fang, HL ;
DaCosta, HFM .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2003, 46 (01) :17-34
[8]   Mechanical properties of suspended graphene sheets [J].
Frank, I. W. ;
Tanenbaum, D. M. ;
Van der Zande, A. M. ;
McEuen, P. L. .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (06) :2558-2561
[9]   Free-standing graphene at atomic resolution [J].
Gass, Mhairi H. ;
Bangert, Ursel ;
Bleloch, Andrew L. ;
Wang, Peng ;
Nair, Rahul R. ;
Geim, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (11) :676-681
[10]   Spatially resolved raman spectroscopy of single- and few-layer graphene [J].
Graf, D. ;
Molitor, F. ;
Ensslin, K. ;
Stampfer, C. ;
Jungen, A. ;
Hierold, C. ;
Wirtz, L. .
NANO LETTERS, 2007, 7 (02) :238-242