Sensor location in feedback control of partial differential equation systems

被引:33
作者
Faulds, AL [1 ]
King, BB [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Interdisciplinary Ctr Appl Math, Blacksburg, VA 24061 USA
来源
PROCEEDINGS OF THE 2000 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS | 2000年
关键词
D O I
10.1109/CCA.2000.897480
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The task of placing sensors for purposes of feedback control is vital in order to obtain information necessary for accurate state estimation. In this paper, we present a method for optimal location of sensors which is motivated by the feedback control law for the distributed parameter system. In particular, we show how feedback functional gains reflect spatial regions over which accurate information is paramount for control. We use this information in an algorithm which computes Centroidal Voronoi Tesselations, yielding optimal locations for sensors. This placement is compared with three others to show that location can be more important than number of sensors.
引用
收藏
页码:536 / 541
页数:6
相关论文
共 10 条
[1]  
ATWELL JA, 990701 ICAM
[2]   A reduced basis approach to the design of low-order feedback controllers for nonlinear continuous systems [J].
Burns, JA ;
King, BB .
JOURNAL OF VIBRATION AND CONTROL, 1998, 4 (03) :297-323
[3]  
Burns JA, 1997, IEEE DECIS CONTR P, P2243, DOI 10.1109/CDC.1997.657106
[4]   Feedback control of a thermal fluid using state estimation [J].
Burns, JA ;
King, BB ;
Rubio, D .
INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1998, 11 (1-2) :93-112
[5]  
Demmel J.W., 1997, APPL NUMERICAL LINEA
[6]   Centroidal Voronoi tessellations: Applications and algorithms [J].
Du, Q ;
Faber, V ;
Gunzburger, M .
SIAM REVIEW, 1999, 41 (04) :637-676
[7]  
FABIANO RH, 1996, 1 INT C NONL PROBL A, P181
[8]  
GALLIVAN MA, 1997, DESIGN STUDY THERMAL
[9]  
King BB, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P3741, DOI 10.1109/CDC.1995.479176
[10]  
Lasiecka I., 1991, DIFFERENTIAL ALGEBRA, V164