Feedback control of a thermal fluid using state estimation

被引:26
作者
Burns, JA [1 ]
King, BB
Rubio, D
机构
[1] Virginia Polytech Inst & State Univ, Ctr Optimal Design & Control, Interdisciplinary Ctr Appl Math, Blacksburg, VA 24061 USA
[2] Oregon State Univ, Dept Math, Corvallis, OR 97331 USA
基金
美国国家科学基金会;
关键词
fluid flow control; state estimation; finite element approximation;
D O I
10.1080/10618569808940867
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we consider the problem of designing a feedback controller for a thermal fluid. Any practical feedback controller for a fluid flow system must incorporate some type of state estimator, Moreover, regardless of the approach, one must introduce approximations at some point in the analysis. The method presented here uses distributed parameter control theory to guide the design and approximation of practical state estimators. We use finite element techniques to approximate optimal infinite dimensional controllers based on linear quadratic Gaussian (LQG) and MinMax theory for the Boussinesq equations. These designs are then compared to full state feedback, We present several numerical experiments and we describe how these techniques can also be applied to sensor placement problems.
引用
收藏
页码:93 / 112
页数:20
相关论文
共 21 条
[1]  
[Anonymous], P 1 INT C NONL PROBL
[2]  
Bernhard P., 1991, HINFINITYOPTIMAL CON
[3]   ON NONCONVERGENCE OF ADJOINT SEMIGROUPS FOR CONTROL-SYSTEMS WITH DELAYS [J].
BURNS, J ;
ITO, K ;
PROPST, G .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (06) :1442-1454
[4]   A reduced basis approach to the design of low-order feedback controllers for nonlinear continuous systems [J].
Burns, JA ;
King, BB .
JOURNAL OF VIBRATION AND CONTROL, 1998, 4 (03) :297-323
[5]  
Burns JA, 1997, IEEE DECIS CONTR P, P2243, DOI 10.1109/CDC.1997.657106
[6]  
BURNS JA, 1994, IEEE DECIS CONTR P, P3967, DOI 10.1109/CDC.1994.411563
[7]   STABILITY CHARACTERISTICS OF A SINGLE-PHASE FREE CONVECTION LOOP [J].
CREVELING, HF ;
DEPAZ, JF ;
BALADI, JY ;
SCHOENHALS, RJ .
JOURNAL OF FLUID MECHANICS, 1975, 67 (JAN14) :65-84
[8]   APPROXIMATION-THEORY FOR LINEAR-QUADRATIC-GAUSSIAN OPTIMAL-CONTROL OF FLEXIBLE STRUCTURES [J].
GIBSON, JS ;
ADAMIAN, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (01) :1-37
[9]  
KING BB, IN PRESS COMPUTATION