Efficient computation and visualization of coherent structures in fluid flow applications

被引:123
作者
Garth, Christoph [1 ]
Gerhardt, Florian
Tricoche, Xavier
Hagen, Hans
机构
[1] Univ Kaiserslautern, D-67663 Kaiserslautern, Germany
[2] Univ Calif Davis, Inst Data Anal & Visualizat, Davis, CA 95616 USA
[3] Univ Utah, SCI Inst, Salt Lake City, UT 84112 USA
[4] Purdue Univ, W Lafayette, IN 47907 USA
关键词
flow visualization; feature detection; 3D vector field visualization;
D O I
10.1109/TVCG.2007.70551
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The recently introduced notion of Finite-Time Lyapunov Exponent to characterize Coherent Lagrangian Structures provides a powerful framework for the visualization and analysis of complex technical flows. Its definition is simple and intuitive, and it has a deep theoretical foundation. While the application of this approach seems straightforward in theory, the associated computational cost is essentially prohibitive. Due to the Lagrangian nature of this technique, a huge number of particle paths must be computed to fill the space-time flow domain. In this paper, we propose a novel scheme for the adaptive computation of FTLE fields in two and three dimensions that significantly reduces the number of required particle paths. Furthermore, for three-dimensional flows, we show on several examples that meaningful results can be obtained by restricting the analysis to a well-chosen plane intersecting the flow domain. Finally, we examine some of the visualization aspects of FTLE-based methods and introduce several new variations that help in the analysis of specific aspects of a flow.
引用
收藏
页码:1464 / 1471
页数:8
相关论文
共 23 条
[1]   Predictability in the large: An extension of the concept of Lyapunov exponent [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01) :1-26
[2]  
EBERLY D, 1994, J MATH IMAGING VIS, V4, P355
[3]  
GARTH C, 2007, IN PRESS TOPOLOGY BA
[4]  
GREEN M, 2006, IN PRESS J FLUID MEC
[5]   Distinguished material surfaces and coherent structures in three-dimensional fluid flows [J].
Haller, G .
PHYSICA D, 2001, 149 (04) :248-277
[6]   Lagrangian coherent structures from approximate velocity data [J].
Haller, G .
PHYSICS OF FLUIDS, 2002, 14 (06) :1851-1861
[7]   Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence [J].
Haller, G .
PHYSICS OF FLUIDS, 2001, 13 (11) :3365-3385
[8]   Finding finite-time invariant manifolds in two-dimensional velocity fields [J].
Haller, G .
CHAOS, 2000, 10 (01) :99-108
[9]   Lagrangian coherent structures and mixing in two-dimensional turbulence [J].
Haller, G ;
Yuan, G .
PHYSICA D, 2000, 147 (3-4) :352-370
[10]  
KINDLMANN G, 2006, P MED IM COMP COMP A