Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

被引:65
作者
Alves, Vinicius M. [1 ,2 ]
Muratov, Eugene [2 ,3 ]
Fourches, Denis [2 ]
Strickland, Judy [4 ]
Kleinstreuer, Nicole [4 ]
Andrade, Carolina H. [1 ]
Tropsha, Alexander [2 ]
机构
[1] Univ Fed Goias, Fac Pharm, Lab Mol Modeling & Design, BR-74605220 Goiania, Go, Brazil
[2] Univ N Carolina, Eshelman Sch Pharm, Div Chem Biol & Med Chem, Lab Mol Modeling, Chapel Hill, NC 27599 USA
[3] NAS Ukraine, AV Bogatsky Phys Chem Inst, Lab Theoret Chem, UA-65080 Odessa, Ukraine
[4] NICEATM, ILS Contractor Supporting, Res Triangle Pk, NC 27709 USA
关键词
Skin sensitization; QSAR; Virtual screening; Skin toxicants; LYMPH-NODE ASSAY; ADVERSE OUTCOME PATHWAYS; QUANTITATIVE STRUCTURE; PEPTIDE REACTIVITY; CLASSIFICATION; VALIDATION; SILICO; ALLERGENS; TOXICITY;
D O I
10.1016/j.taap.2014.12.014
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71-88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:262 / 272
页数:11
相关论文
共 84 条
[1]   Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010 [J].
Adler, Sarah ;
Basketter, David ;
Creton, Stuart ;
Pelkonen, Olavi ;
van Benthem, Jan ;
Zuang, Valerie ;
Andersen, Klaus Ejner ;
Angers-Loustau, Alexandre ;
Aptula, Aynur ;
Bal-Price, Anna ;
Benfenati, Emilio ;
Bernauer, Ulrike ;
Bessems, Jos ;
Bois, Frederic Y. ;
Boobis, Alan ;
Brandon, Esther ;
Bremer, Susanne ;
Broschard, Thomas ;
Casati, Silvia ;
Coecke, Sandra ;
Corvi, Raffaella ;
Cronin, Mark ;
Daston, George ;
Dekant, Wolfgang ;
Felter, Susan ;
Grignard, Elise ;
Gundert-Remy, Ursula ;
Heinonen, Tuula ;
Kimber, Ian ;
Kleinjans, Jos ;
Komulainen, Hannu ;
Kreiling, Reinhard ;
Kreysa, Joachim ;
Leite, Sofia Batista ;
Loizou, George ;
Maxwell, Gavin ;
Mazzatorta, Paolo ;
Munn, Sharon ;
Pfuhler, Stefan ;
Phrakonkham, Pascal ;
Piersma, Aldert ;
Poth, Albrecht ;
Prieto, Pilar ;
Repetto, Guillermo ;
Rogiers, Vera ;
Schoeters, Greet ;
Schwarz, Michael ;
Serafimova, Rositsa ;
Tahti, Hanna ;
Testai, Emanuela .
ARCHIVES OF TOXICOLOGY, 2011, 85 (05) :367-485
[2]   Identifying and characterizing chemical skin sensitizers without animal testing: Colipa's research and method development program [J].
Aeby, P. ;
Ashikaga, T. ;
Bessou-Touya, S. ;
Schepky, A. ;
Gerberick, F. ;
Kern, P. ;
Marrec-Fairley, M. ;
Maxwell, G. ;
Ovigne, J. -M. ;
Sakaguchi, H. ;
Reisinger, K. ;
Tailhardat, M. ;
Martinozzi-Teissier, S. ;
Winkler, P. .
TOXICOLOGY IN VITRO, 2010, 24 (06) :1465-1473
[3]   Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization [J].
Alves, Vinicius M. ;
Muratov, Eugene ;
Fourches, Denis ;
Strickland, Judy ;
Kleinstreuer, Nicole ;
Andrade, Carolina H. ;
Tropsha, Alexander .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2015, 284 (02) :273-280
[4]  
Anderson S.E., 2011, J ALLERGY, P1
[5]   ADVERSE OUTCOME PATHWAYS: A CONCEPTUAL FRAMEWORK TO SUPPORT ECOTOXICOLOGY RESEARCH AND RISK ASSESSMENT [J].
Ankley, Gerald T. ;
Bennett, Richard S. ;
Erickson, Russell J. ;
Hoff, Dale J. ;
Hornung, Michael W. ;
Johnson, Rodney D. ;
Mount, David R. ;
Nichols, John W. ;
Russom, Christine L. ;
Schmieder, Patricia K. ;
Serrrano, Jose A. ;
Tietge, Joseph E. ;
Villeneuve, Daniel L. .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2010, 29 (03) :730-741
[6]  
[Anonymous], 1999, MUR LOC LYMPH NOD AS
[7]   QSAR analysis of the toxicity of nitroaromatics in Tetrahymena pyriformis: structural factors and possible modes of action [J].
Artemenko, A. G. ;
Muratov, E. N. ;
Kuz'min, V. E. ;
Muratov, N. N. ;
Varlamova, E. V. ;
Kuz'mina, A. V. ;
Gorb, L. G. ;
Golius, A. ;
Hill, F. C. ;
Leszczynski, J. ;
Tropsha, A. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2011, 22 (5-6) :575-601
[8]   Local lymph node assay - validation, conduct and use in practice [J].
Basketter, DA ;
Evans, P ;
Fielder, RJ ;
Gerberick, GF ;
Dearman, RJ ;
Kimber, I .
FOOD AND CHEMICAL TOXICOLOGY, 2002, 40 (05) :593-598
[9]   THE VALUE OF THE LOCAL LYMPH-NODE ASSAY IN QUANTITATIVE STRUCTURE-ACTIVITY INVESTIGATIONS [J].
BASKETTER, DA ;
ROBERTS, DW ;
CRONIN, M ;
SCHOLES, EW .
CONTACT DERMATITIS, 1992, 27 (03) :137-142
[10]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669