Chaotic flow:: The physics of species coexistence

被引:118
作者
Károlyi, G
Péntek, A [1 ]
Scheuring, I
Tél, T
Toroczkai, Z
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, Marine Phys Lab, La Jolla, CA 92093 USA
[2] Tech Univ Budapest, Dept Civil Engn Mech, H-1521 Budapest, Hungary
[3] Eotvos Lorand Univ, Dept Plant Taxon & Ecol, Res Grp Ecol & Theoret Biol, H-1083 Budapest, Hungary
[4] Eotvos Lorand Univ, Inst Theoret Phys, H-1518 Budapest, Hungary
[5] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[6] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
关键词
D O I
10.1073/pnas.240242797
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Hydrodynamical phenomena play a keystone role in the population dynamics of passively advected species such as phytoplankton and replicating macromolecules. Recent developments in the field of chaotic advection in hydrodynamical flows encourage us to revisit the population dynamics of species competing for the same resource in an open aquatic system. If this aquatic environment is homogeneous and well-mixed then classical studies predict competitive exclusion of all but the most perfectly adapted species. In fact, this homogeneity is very rare, and the species of the community (at least on an ecological observation time scale) are in nonequilibrium coexistence. We argue that a peculiar small-scale, spatial heterogeneity generated by chaotic advection can lead to coexistence. In open flows this imperfect mixing lets the populations accumulate along fractal filaments, where competition is governed by an "advantage of rarity" principle. The possibility of this generic coexistence sheds light on the enrichment of phytoplankton and the information integration in early macromolecule evolution.
引用
收藏
页码:13661 / 13665
页数:5
相关论文
共 39 条
[31]   Experimental evidence for chaotic scattering in a fluid wake [J].
Sommerer, JC ;
Ku, HC ;
Gilreath, HE .
PHYSICAL REVIEW LETTERS, 1996, 77 (25) :5055-5058
[32]   A numerical model of mesoscale frontal instabilities and plankton dynamics - I. Model formulation and initial experiments [J].
Spall, SA ;
Richards, KJ .
DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS, 2000, 47 (07) :1261-1301
[33]   SUB-EXPONENTIAL GROWTH AND COEXISTENCE OF NON-ENZYMATICALLY REPLICATING TEMPLATES [J].
SZATHMARY, E ;
GLADKIH, I .
JOURNAL OF THEORETICAL BIOLOGY, 1989, 138 (01) :55-58
[34]   Chaotic advection, diffusion, and reactions in open flows [J].
Tél, T ;
Károlyi, G ;
Péntek, A ;
Scheuring, I ;
Toroczkai, Z ;
Grebogi, C ;
Kadtke, J .
CHAOS, 2000, 10 (01) :89-98
[35]   Advection of active particles in open chaotic flows [J].
Toroczkai, Z ;
Karolyi, G ;
Pentek, A ;
Tel, T ;
Grebogi, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (03) :500-503
[36]   Wada dye boundaries in open hydrodynamical flows [J].
Toroczkai, Z ;
Karolyi, G ;
Pentek, A ;
Tel, T ;
Grebogi, C ;
Yorke, JA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 239 (1-3) :235-243
[37]   LIFE IN A LIGAND SPHERE [J].
WACHTERSHAUSER, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (10) :4283-4287
[38]  
WILSON JB, 1990, NZ J ECOL, V43, P17
[39]   AUTOCATALYTIC SYNTHESIS OF A TETRANUCLEOTIDE ANALOG [J].
ZIELINSKI, WS ;
ORGEL, LE .
NATURE, 1987, 327 (6120) :346-347