Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito

被引:170
作者
Valenzuela, JG
Francischetti, IMB
Pham, VM
Garfield, MK
Ribeiro, JMC
机构
[1] NIAID, Med Entomol Sect, Parasit Dis Lab, NIH, Bethesda, MD 20892 USA
[2] NIAID, Res Technol Branch, NIH, Bethesda, MD 20892 USA
关键词
salivary glands; proteome; electrophoresis; hematophagy; sialome;
D O I
10.1016/S0965-1748(03)00067-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Anopheles stephensi is the main urban mosquito vector of malaria in the Indian subcontinent, and belongs to the same subgenus as Anopheles gambiae, the main malaria vector in Africa. Recently the genome and proteome sets of An. gambiae have been described, as well as several protein sequences expressed in its salivary glands, some of which had their expression confirmed by ammo terminal sequencing. In this paper, we randomly sequenced a full-length cDNA library of An. stephensi and performed Edman degradation of polyvinylidene difluoride (PVDF)-transferred protein bands from salivary homogenates. Twelve of 13 proteins found by aminoterminal degradation were found among the cDNA clusters of the library. Thirty-three full-length novel cDNA sequences are reported, including a novel secreted galectin; the homologue of anophelin, a thrombin inhibitor; a novel trypsin/chymotrypsin inhibitor; an apyrase; a lipase; and several new members of the D7 protein family. Most of the novel proteins have no known function. Comparison of the putatively secreted and putatively housekeeping proteins of An. stephensi with An. gambiae proteins indicated that the salivary gland proteins are at a faster evolutionary pace. The possible role of these proteins in blood and sugar feeding by the mosquito is discussed. The electronic tables and supplemental material are available at http://www.ncbi.nlm.nih.gov/projects/Mosquito/A_stephensi_sialome/.
引用
收藏
页码:717 / 732
页数:16
相关论文
共 60 条
[1]   The mucin-like glycoprotein super-family of Trypanosoma cruzi:: structure and biological roles [J].
Acosta-Serrano, A ;
Almeida, IC ;
Freitas, LH ;
Yoshida, N ;
Schenkman, S .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2001, 114 (02) :143-150
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Inhibition of hemostasis by a high affinity biogenic amine-binding protein from the saliva of a blood-feeding insect [J].
Andersen, JF ;
Francischetti, IMB ;
Valenzuela, JG ;
Schuck, P ;
Ribeiro, JMC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (07) :4611-4617
[4]  
[Anonymous], J BIOL CHEM
[5]   Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae [J].
Arcà, B ;
Lombardo, F ;
Capurro, MD ;
della Torre, A ;
Dimopoulos, G ;
James, AA ;
Coluzzi, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (04) :1516-1521
[6]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[7]   Prospects for the genetic transformation of arthropods [J].
Ashburner, M ;
Hoy, MA ;
Peloquin, JJ .
INSECT MOLECULAR BIOLOGY, 1998, 7 (03) :201-213
[8]   Human immune response to sand fly salivary gland antigens: A useful epidemiological marker? [J].
Barral, A ;
Honda, E ;
Caldas, A ;
Costa, J ;
Vinhas, V ;
Rowton, ED ;
Valenzuela, JG ;
Charlab, R ;
Barral-Netto, M ;
Ribeiro, JMC .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2000, 62 (06) :740-745
[9]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[10]   Stable germline transformation of the malaria mosquito Anopheles stephensi [J].
Catteruccia, F ;
Nolan, T ;
Loukeris, TG ;
Blass, C ;
Savakis, C ;
Kafatos, FC ;
Crisanti, A .
NATURE, 2000, 405 (6789) :959-962