An outline of adaptive wavelet Galerkin methods for Tikhonov regularization of inverse parabolic problems

被引:7
作者
Dahlke, S [1 ]
Maass, P [1 ]
机构
[1] Univ Marburg, Fachbereich Math, D-3550 Marburg, Germany
来源
RECENT DEVELOPMENT IN THEORIES & NUMERICS | 2003年
关键词
D O I
10.1142/9789812704924_0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss some ideas how adaptive wavelet schemes can be applied to the treatment of certain inverse problems. The classical Tikhonov-Phillips regularization produces a numerical scheme which consists of an inner and an outer iteration. In its normal form, the inner iteration can be interpreted as a boundedly invertible operator equation which can be handled very efficiently by using a stable wavelet basis. This general framework is illustrated by an application to the inverse heat equation.
引用
收藏
页码:56 / 66
页数:11
相关论文
共 26 条
[1]   Adaptive wavelet schemes for elliptic problems implementation and numerical experiments [J].
Barinka, A ;
Barsch, T ;
Charton, P ;
Cohen, A ;
Dahlke, S ;
Dahmen, W ;
Urban, K .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (03) :910-939
[2]  
Bornemann F. A., 1991, Impact of Computing in Science and Engineering, V3, P93, DOI 10.1016/0899-8248(91)90011-I
[3]  
BORNEMANN FA, 1990, IMPACT COMPUT SCI EN, V2, P279
[4]   The wavelet element method - Part II. Realization and additional features in 2D and 3D [J].
Canuto, C ;
Tabacco, A ;
Urban, K .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2000, 8 (02) :123-165
[5]  
Cohen A, 2001, MATH COMPUT, V70, P27, DOI 10.1090/S0025-5718-00-01252-7
[6]   Stable multiscale bases and local error estimation for elliptic problems [J].
Dahlke, S ;
Dahmen, W ;
Hochmuth, R ;
Schneider, R .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (01) :21-47
[7]   Wavelets on manifolds - I: Construction and domain decomposition [J].
Dahmen, W ;
Schneider, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 31 (01) :184-230
[8]   Composite wavelet bases for operator equations [J].
Dahmen, W ;
Schneider, R .
MATHEMATICS OF COMPUTATION, 1999, 68 (228) :1533-1567
[9]  
DAHMEN W, 1998, RESULTS MATH, V34, P255
[10]  
Dicken V., 1996, J. Inverse Ill -Posed Probl., V4, P203, DOI DOI 10.1515/JIIP.1996.4.3.203