Effect of atomic hydrogen on Er luminescence from AlN

被引:16
作者
Pearton, SJ [1 ]
Abernathy, CR
MacKenzie, JD
Hommerich, U
Zavada, JM
Wilson, RG
Schwartz, RN
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Hampton Univ, Dept Phys, Res Ctr Opt Phys, Hampton, VA 23668 USA
[3] USA, Res Off, Res Triangle Pk, NC 27709 USA
[4] Hughes Res Labs, Malibu, CA 90265 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A | 1998年 / 16卷 / 03期
关键词
D O I
10.1116/1.581131
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
AlN(Er) doped with Er during metal organic molecular beam epitaxy has been plasma hydrogenated in situ at 200-250 degrees C using an electron cyclotron resonance source. By isotopic substitution of H-2 for H-1, we have found from secondary ion mass spectrometry profiling that a 30 min hydrogenation treatment can incorporate similar to 2 X 10(19) cm(-3) deuterium atoms to depths greater than or equal to 1 mu m. The intensity of the 1.54 mu m Er3+ luminescence is increased by a factor of similar to 5 by the 200 degrees C hydrogenation, and this effect is thermally stable to 300 degrees C, indicating a binding energy of >1.5 eV for hydrogen at defects in the AlN. These defects would normally either be recombination centers or provide an alternative de-excitation path for the Er. We have previously found that AlN provides the best resistance to thermal quenching of Er luminescence of any semiconductor due to its wide bandgap. Together, these results suggest that AIN(Er) may be a promising material for optical control of devices such as light-triggered SiC or GaN thyristors for power switching applications, where a fiber-transmitted signal from temperature-tolerant material is necessary in controlling power distribution grids. Hydrogen does not leave the AlN until similar to 800 degrees C and presumably forms an intermediate state such as H-2 or larger clusters prior to evolution from the surface, and again this stability is among the best for any semiconductor. (C) 1998 American Vacuum Society.
引用
收藏
页码:1627 / 1630
页数:4
相关论文
共 26 条
[1]   COMPOUND SEMICONDUCTOR GROWTH BY METALLORGANIC MOLECULAR-BEAM EPITAXY (MOMBE) [J].
ABERNATHY, CR .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 1995, 14 (05) :203-253
[2]   TEMPERATURE-DEPENDENCE AND QUENCHING PROCESSES OF THE INTRA-4F LUMINESCENCE OF ER IN CRYSTALLINE SI [J].
COFFA, S ;
FRANZO, G ;
PRIOLO, F ;
POLMAN, A ;
SERNA, R .
PHYSICAL REVIEW B, 1994, 49 (23) :16313-16320
[3]  
COFFA S, 1996, MAT RES SOC S P, V422
[4]   MICROSTRUCTURE OF ERBIUM-IMPLANTED SI [J].
EAGLESHAM, DJ ;
MICHEL, J ;
FITZGERALD, EA ;
JACOBSON, DC ;
POATE, JM ;
BENTON, JL ;
POLMAN, A ;
XIE, YH ;
KIMERLING, LC .
APPLIED PHYSICS LETTERS, 1991, 58 (24) :2797-2799
[5]   LUMINESCENCE OF ERBIUM IMPLANTED IN VARIOUS SEMICONDUCTORS - IV-MATERIALS, III-V-MATERIALS AND II-VI MATERIALS [J].
FAVENNEC, PN ;
LHARIDON, H ;
SALVI, M ;
MOUTONNET, D ;
LEGUILLOU, Y .
ELECTRONICS LETTERS, 1989, 25 (11) :718-719
[6]   ROOM-TEMPERATURE ELECTROLUMINESCENCE FROM ER-DOPED CRYSTALLINE SI [J].
FRANZO, G ;
PRIOLO, F ;
COFFA, S ;
POLMAN, A ;
CARNERA, A .
APPLIED PHYSICS LETTERS, 1994, 64 (17) :2235-2237
[7]   Excitation and deexcitation of Er3+ in crystalline silicon [J].
Kik, PG ;
deDood, MJA ;
Kikoin, K ;
Polman, A .
APPLIED PHYSICS LETTERS, 1997, 70 (13) :1721-1723
[8]   Er doping of AlN during growth by metalorganic molecular beam epitaxy [J].
MacKenzie, JD ;
Abernathy, CR ;
Pearton, SJ ;
Hommerich, U ;
Wu, X ;
Schwartz, RN ;
Wilson, RG ;
Zavada, JM .
APPLIED PHYSICS LETTERS, 1996, 69 (14) :2083-2085
[9]   Er doping of III-nitrides during growth by metalorganic molecular beam epitaxy [J].
MacKenzie, JD ;
Abernathy, CR ;
Pearton, SJ ;
Hommerich, U ;
Wu, X ;
Schwartz, RN ;
Wilson, RG ;
Zavada, JM .
JOURNAL OF CRYSTAL GROWTH, 1997, 175 :84-88
[10]   WHISPERING-GALLERY MODE MICRODISK LASERS [J].
MCCALL, SL ;
LEVI, AFJ ;
SLUSHER, RE ;
PEARTON, SJ ;
LOGAN, RA .
APPLIED PHYSICS LETTERS, 1992, 60 (03) :289-291