Enhanced Electrochemical Lithium Storage by Graphene Nanoribbons

被引:233
作者
Bhardwaj, Tarun [2 ]
Antic, Aleks [3 ]
Pavan, Barbara [3 ]
Barone, Veronica [1 ]
Fahlman, Bradley D. [2 ]
机构
[1] Cent Michigan Univ, Dept Phys, Mt Pleasant, MI 48859 USA
[2] Cent Michigan Univ, Dept Chem, Mt Pleasant, MI 48859 USA
[3] Cent Michigan Univ, Sci Adv Mat PhD Program, Mt Pleasant, MI 48859 USA
关键词
ION BATTERIES; CARBON NANOTUBES; LI STORAGE; ANODE; GRAPHITE; SHEETS; EDGE;
D O I
10.1021/ja106162f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Herein, we report the electrochemical Li intake capacity of carbonaceous one-dimensional graphene nanoribbons (GNRs) obtained by unzipping pristine multiwalled carbon nanotubes (MWCNTs). We have found that nanotubes with diameters of similar to 50 nm present a smaller reversible capacity than conventional mesocarbon microbead (MCMB) powder. Reduced GNRs improve the capacity only marginally over the MCMB reference but present a lower Coulombic efficiency as well as a higher capacity loss per cycle. Oxidized GNRs (ox-GNRs) outperform all of the other materials studied here in terms of energy density. They present a first charge capacity of similar to 1400 mA h g(-1) with a low Coulombic efficiency for the first cycle (similar to 53%). The reversible capacity of ox-GNRs is in the range of 800 mA h g(-1), with a capacity loss per cycle of similar to 3% for early cycles and a decreasing loss rate for subsequent cycles.
引用
收藏
页码:12556 / 12558
页数:3
相关论文
共 27 条
  • [1] Electronic structure and stability of semiconducting graphene nanoribbons
    Barone, Veronica
    Hod, Oded
    Scuseria, Gustavo E.
    [J]. NANO LETTERS, 2006, 6 (12) : 2748 - 2754
  • [2] Electronic confinement and coherence in patterned epitaxial graphene
    Berger, Claire
    Song, Zhimin
    Li, Xuebin
    Wu, Xiaosong
    Brown, Nate
    Naud, Cecile
    Mayou, Didier
    Li, Tianbo
    Hass, Joanna
    Marchenkov, Atexei N.
    Conrad, Edward H.
    First, Phillip N.
    de Heer, Wait A.
    [J]. SCIENCE, 2006, 312 (5777) : 1191 - 1196
  • [3] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [4] CHUSID O, 1993, J POWER SOURCES, V43, P47, DOI 10.1016/0378-7753(93)80101-T
  • [5] Peculiar localized state at zigzag graphite edge
    Fujita, M
    Wakabayashi, K
    Nakada, K
    Kusakabe, K
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (07) : 1920 - 1923
  • [6] Electrochemical intercalation of single-walled carbon nanotubes with lithium
    Gao, B
    Kleinhammes, A
    Tang, XP
    Bower, C
    Fleming, L
    Wu, Y
    Zhou, O
    [J]. CHEMICAL PHYSICS LETTERS, 1999, 307 (3-4) : 153 - 157
  • [7] Energy band-gap engineering of graphene nanoribbons
    Han, Melinda Y.
    Oezyilmaz, Barbaros
    Zhang, Yuanbo
    Kim, Philip
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (20)
  • [8] Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes
    Higginbotham, Amanda L.
    Kosynkin, Dmitry V.
    Sinitskii, Alexander
    Sun, Zhengzong
    Tour, James M.
    [J]. ACS NANO, 2010, 4 (04) : 2059 - 2069
  • [9] Hod O, 2007, NANO LETT, V7, P2295, DOI 10.1021/nI0708922
  • [10] Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
    Kosynkin, Dmitry V.
    Higginbotham, Amanda L.
    Sinitskii, Alexander
    Lomeda, Jay R.
    Dimiev, Ayrat
    Price, B. Katherine
    Tour, James M.
    [J]. NATURE, 2009, 458 (7240) : 872 - U5