Topological horseshoes

被引:151
作者
Kennedy, J [1 ]
Yorke, JA
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
关键词
topological horseshoe; geometric horseshoe; chaos; shift dynamics; connection; preconnection; crossing number; expander; symbol set;
D O I
10.1090/S0002-9947-01-02586-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When does a continuous map have chaotic dynamics in a set Q? More specifically, when does it factor over a shift on M symbols? This paper is an attempt to clarify some of the issues when there is no hyperbolicity assumed. We find that the key is to define a "crossing number" for that set Q. If that number is M and M > 1, then Q contains a compact invariant set which factors over a shift on M symbols.
引用
收藏
页码:2513 / 2530
页数:18
相关论文
共 9 条
[1]   A GEOMETRIC CRITERION FOR POSITIVE TOPOLOGICAL-ENTROPY [J].
BURNS, K ;
WEISS, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (01) :95-118
[2]   Horseshoes and the Conley index spectrum [J].
Carbinatto, MC ;
Kwapisz, J ;
Mischaikow, K .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :365-377
[3]  
Carbinatto MC, 1999, DISCRET CONTIN DYN S, V5, P599
[4]   The topology of fluid flow past a sequence of cylinders [J].
Kennedy, J ;
Sanjuan, MAF ;
Yorke, JA ;
Grebogi, C .
TOPOLOGY AND ITS APPLICATIONS, 1999, 94 (1-3) :207-242
[5]  
KENNEDY J, IN PRESS AM MATH MON
[6]  
Kuratowski C., 1968, TOPOLOGY, VII
[7]  
Mischaikow K., 1995, JAPAN J IND APPL MAT, V12, P205
[8]   Indecomposable continua in dynamical systems with noise: Fluid flow past an array of cylinders [J].
Sanjuan, MAF ;
Kennedy, J ;
Grebogi, C ;
Yorke, JA .
CHAOS, 1997, 7 (01) :125-138
[9]   The Conley index and symbolic dynamics [J].
Szymczak, A .
TOPOLOGY, 1996, 35 (02) :287-299