Variable step implementation of geometric integrators

被引:24
作者
Calvo, MP [1 ]
Lopez-Marcos, MA [1 ]
Sanz-Serna, JM [1 ]
机构
[1] Univ Valladolid, Fac Ciencias, Dept Matemat Aplicada & Computac, E-47011 Valladolid, Spain
关键词
variable step sizes; symplectic integrators; reversible methods; Kepler's problem;
D O I
10.1016/S0168-9274(98)00035-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare experimentally several techniques for combining geometric integrators with variable time steps. In particular, we study modifications of the Verlet method due to Leimkuhler and a technique for symplectic integration based on Poincare transformations suggested by Hairer and Reich independently. We conclude that it is feasible to develop symplectic variable step size codes that, for Hamiltonian problems, are competitive with standard software. We also analyze the error growth of the new algorithms when integrating periodic orbits. (C) 1998 Elsevier Science B.V. and IMACS. All rights reserved.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 19 条
[1]  
[Anonymous], STATE ART NUMERICAL
[2]   DANGERS OF MULTIPLE TIME-STEP METHODS [J].
BIESIADECKI, JJ ;
SKEEL, RD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 109 (02) :318-328
[3]   THE DEVELOPMENT OF VARIABLE-STEP SYMPLECTIC INTEGRATORS, WITH APPLICATION TO THE 2-BODY PROBLEM [J].
CALVO, MP ;
SANZSERNA, JM .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (04) :936-952
[4]   Error growth in the numerical integration of periodic orbits, with application to Hamiltonian and reversible systems [J].
Cano, B ;
SanzSerna, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1391-1417
[5]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[6]   Reversible long-term integration with variable stepsizes [J].
Hairer, E ;
Stoffer, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (01) :257-269
[7]   Variable time step integration with symplectic methods [J].
Hairer, E .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :219-227
[8]  
Hairer E., 1994, ANN NUMER MATH, V1, P107
[9]  
Higham N. J., 1996, ACCURACY STABILITY N
[10]   The adaptive Verlet method [J].
Huang, WZ ;
Leimkuhler, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (01) :239-256