Toxic response of nickel nanoparticles in human lung epithelial A549 cells

被引:129
作者
Ahamed, Maqusood [1 ]
机构
[1] King Saud Univ, King Abdullah Inst Nanotechnol, Riyadh 11451, Saudi Arabia
关键词
Nickel nanoparticles; Cytotoxicity; Health effects; Oxidative stress; Antioxidant; ZINC-OXIDE NANOPARTICLES; OXIDATIVE STRESS; SILVER NANOPARTICLES; IN-VITRO; CYTOTOXICITY; EXPOSURE; NANOTOXICOLOGY; GENOTOXICITY; MECHANISM; APOPTOSIS;
D O I
10.1016/j.tiv.2011.02.015
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Nickel nanoparticle (Ni NP) is increasingly used in modern industries such as catalysts, sensors and electronic applications. Due to wide-spread industrial applications the inhalation is the primary source of exposure to Ni NPs. However, data demonstrating the effect of Ni NPs on the pulmonary system remain scarce. The present study was designed to examine the toxic effect of human lung epithelial A549 cells treated with well characterized Ni NPs at the concentrations of 0, 1, 2, 5, 10 and 25 mu g/ml for 24 and 48 h. Mitochondrial function (MU assay), membrane leakage of lactate dehydrogenase (LDH assay), reduced glutathione (GSH), reactive oxygen species (ROS), membrane lipid peroxidation (LPO) and caspase-3 activity were assessed as toxicity end points. Results showed that Ni NPs reduced mitochondrial function and induced the leakage of LDH in dose and time-dependent manner. Ni NPs were also found to induce oxidative stress in dose and time-dependent manner indicated by depletion of GSH and induction of ROS and LPO. Further, activity of caspase-3 enzyme, marker of apoptosis was significantly higher in treated cells with time and Ni NPs dosage. The results exhibited significant toxicity of Ni NPs in human lung epithelial A549 cells which is likely to be mediated through oxidative stress. This study warrants more careful assessment of Ni NPs before their industrial applications. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:930 / 936
页数:7
相关论文
共 45 条
[1]   Low level lead exposure and oxidative stress: Current opinions [J].
Ahamed, M. ;
Siddiqui, M. K. J. .
CLINICA CHIMICA ACTA, 2007, 383 (1-2) :57-64
[2]   Silver nanoparticle applications and human health [J].
Ahamed, Maqusood ;
AlSalhi, Mohamad S. ;
Siddiqui, M. K. J. .
CLINICA CHIMICA ACTA, 2010, 411 (23-24) :1841-1848
[3]   Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells [J].
Ahamed, Maqusood ;
Siddiqui, Maqsood A. ;
Akhtar, Mohd J. ;
Ahmad, Iqbal ;
Pant, Aditya B. ;
Alhadlaq, Hisham A. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 396 (02) :578-583
[4]   Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster [J].
Ahamed, Maqusood ;
Posgai, Ryan ;
Gorey, Timothy J. ;
Nielsen, Mark ;
Hussain, Saber M. ;
Rowe, John J. .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2010, 242 (03) :263-269
[5]   DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells [J].
Ahamed, Maqusood ;
Karns, Michael ;
Goodson, Michael ;
Rowe, John ;
Hussain, Saber M. ;
Schlager, John J. ;
Hong, Yiling .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2008, 233 (03) :404-410
[6]   Nanotoxicity of pure silica mediated through oxidant generation rather than glutathione depletion in human lung epithelial cells [J].
Akhtar, Mohd Javed ;
Ahamed, Maqusood ;
Kumar, Sudhir ;
Siddiqui, Huma ;
Patil, Govil ;
Ashquin, Mohd ;
Ahmad, Iqbal .
TOXICOLOGY, 2010, 276 (02) :95-102
[7]   The primary role of iron-mediated lipid peroxidation in the differential cytotoxicity caused by two varieties of talc nanoparticles on A549 cells and lipid peroxidation inhibitory effect exerted by ascorbic acid [J].
Akhtar, Mohd Javed ;
Kumar, Sudhir ;
Murthy, Ramesh Chandra ;
Ashquin, Mohd ;
Khan, Mohd Imran ;
Patil, Govil ;
Ahmad, Iqbal .
TOXICOLOGY IN VITRO, 2010, 24 (04) :1139-1147
[8]  
Andreescu S., 2009, ENVIRON SCI TECHNOL, V43, P6349
[9]   Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells [J].
AshaRani, P. V. ;
Mun, Grace Low Kah ;
Hande, Manoor Prakash ;
Valiyaveettil, Suresh .
ACS NANO, 2009, 3 (02) :279-290
[10]   Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism [J].
Bai, Wei ;
Zhang, Zhiyong ;
Tian, Wenjing ;
He, Xiao ;
Ma, Yuhui ;
Zhao, Yuliang ;
Chai, Zhifang .
JOURNAL OF NANOPARTICLE RESEARCH, 2010, 12 (05) :1645-1654