Mobility and saturation velocity in graphene on SiO2

被引:420
作者
Dorgan, Vincent E. [1 ]
Bae, Myung-Ho [1 ]
Pop, Eric [1 ,2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Micro & Nanotechnol Lab, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
关键词
TRANSPORT; TRANSISTORS; MODEL;
D O I
10.1063/1.3483130
中图分类号
O59 [应用物理学];
学科分类号
摘要
We examine mobility and saturation velocity in graphene on SiO2 above room temperature (300-500 K) and at high fields (similar to 1 V/mu m). Data are analyzed with practical models including gated carriers, thermal generation, "puddle" charge, and Joule heating. Both mobility and saturation velocity decrease with rising temperature above 300 K, and with rising carrier density above 2x10(12) cm(-2). Saturation velocity is >3x10(7) cm/s at low carrier density, and remains greater than in Si up to 1.2x10(13) cm(-2). Transport appears primarily limited by the SiO2 substrate but results suggest intrinsic graphene saturation velocity could be more than twice that observed here. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3483130]
引用
收藏
页数:3
相关论文
共 25 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   A SEMIEMPIRICAL MODEL OF THE MOSFET INVERSION LAYER MOBILITY FOR LOW-TEMPERATURE OPERATION [J].
ARORA, ND ;
GILDENBLAT, GS .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1987, 34 (01) :89-93
[3]   High-field transport of inversion-layer electrons and holes including velocity overshoot [J].
Assaderaghi, F ;
Sinitsky, D ;
Bokor, J ;
Ko, PK ;
Gaw, H ;
Hu, CM .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1997, 44 (04) :664-671
[4]   Imaging, Simulation, and Electrostatic Control of Power Dissipation in Graphene Devices [J].
Bae, Myung-Ho ;
Ong, Zhun-Yong ;
Estrada, David ;
Pop, Eric .
NANO LETTERS, 2010, 10 (12) :4787-4793
[5]   Transport Properties of Graphene in the High-Current Limit [J].
Barreiro, Amelia ;
Lazzeri, Michele ;
Moser, Joel ;
Mauri, Francesco ;
Bachtold, Adrian .
PHYSICAL REVIEW LETTERS, 2009, 103 (07)
[6]   First-principles analysis of electron-phonon interactions in graphene [J].
Borysenko, K. M. ;
Mullen, J. T. ;
Barry, E. A. ;
Paul, S. ;
Semenov, Y. G. ;
Zavada, J. M. ;
Nardelli, M. Buongiorno ;
Kim, K. W. .
PHYSICAL REVIEW B, 2010, 81 (12)
[7]   High-field transport and velocity saturation in graphene [J].
Chauhan, Jyotsna ;
Guo, Jing .
APPLIED PHYSICS LETTERS, 2009, 95 (02)
[8]   Current-carrying capacity of semiconducting carbon nanotubes [J].
Chen, Yung-Fu ;
Fuhrer, Michael S. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (13) :3403-3407
[9]   Thermal contact resistance between graphene and silicon dioxide [J].
Chen, Z. ;
Jang, W. ;
Bao, W. ;
Lau, C. N. ;
Dames, C. .
APPLIED PHYSICS LETTERS, 2009, 95 (16)
[10]   Spatially resolved spectroscopy of monolayer graphene on SiO2 [J].
Deshpande, A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. ;
LeRoy, B. J. .
PHYSICAL REVIEW B, 2009, 79 (20)