Microthermal analysis of rubber-polyaniline core-shell microparticles using frequency-dependent thermal responses

被引:5
作者
Kuo, C
Chen, CC
Bannister, W
机构
[1] Univ Massachusetts Lowell, Dept Plast Engn, Lowell, MA 01854 USA
[2] Univ Massachusetts Lowell, Dept Chem, Lowell, MA 01854 USA
关键词
microthermal analysis; scanning thermal microscopy; core-shell; polyaniline; polybutadiene;
D O I
10.1016/S0040-6031(03)00152-7
中图分类号
O414.1 [热力学];
学科分类号
摘要
Alternating current (ac) thermal microscopy and microthermal analysis have been utilized for the investigation in the surface thermal conductivity imaging and local thermal analysis (LTA) of polybutadiene-polyaniline core-shell microparticles. The significant variances of thermal conductivity and stiffness between rubber and conducting polymer revealed the remarkable responses in the microthermal analysis. The depth-dependent thermal microscopy controlled by the heating frequency distinguished the rubber core, which was buried under few micron thickness of polyaniline out layer. Local thermal analysis also demonstrated the heat penetration-dependent sensor response from the rigid polyaniline shell to soft polybutadiene core. These experimental results confirmed the core-shell structure of these microparticle materials, as well as the continuous conducting phase of polyaniline. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 20 条
[1]   Application of a Wollaston wired probe for quantitative thermal analysis [J].
Buzin, AI ;
Kamasa, P ;
Pyda, M ;
Wunderlich, B .
THERMOCHIMICA ACTA, 2002, 381 (01) :9-18
[2]   Pharmaceutical applications of micro-thermal analysis [J].
Craig, DQM ;
Kett, VL ;
Andrews, CS ;
Royall, PG .
JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 91 (05) :1201-1213
[3]   AC thermal microscopy: a probe - sample thermal coupling model [J].
Depasse, F ;
Gomes, S ;
Trannoy, N ;
Grossel, P .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1997, 30 (24) :3279-3285
[4]   Quantitative thermal conductivity measurements with nanometre resolution [J].
Fiege, GBM ;
Altes, A ;
Heiderhoff, B ;
Balk, LJ .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (05) :L13-L17
[5]   Sub-micrometer thermal physics - An overview on SThM techniques [J].
Gmelin, E ;
Fischer, R ;
Stitzinger, R .
THERMOCHIMICA ACTA, 1998, 310 (1-2) :1-17
[6]   AC scanning thermal microscopy:: Tip-sample interaction and buried defects modellings [J].
Gomès, S ;
Trannoy, N ;
Depasse, F ;
Grossel, P .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2000, 39 (04) :526-531
[7]   3D thermal wave scattering on buried inhomogeneities in ac thermal microscopy [J].
Gomes, S ;
Depasse, F ;
Grossel, P .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1998, 31 (19) :2377-2387
[8]  
Gorbunov V. V., 2000, PROBE MICROSC, V2, P53
[9]   Probing surface microthermal properties by scanning thermal microscopy [J].
Gorbunov, VV ;
Fuchigami, N ;
Hazel, JL ;
Tsukruk, VV .
LANGMUIR, 1999, 15 (24) :8340-8343
[10]   Localized thermal analysis using a miniaturized resistive probe [J].
Hammiche, A ;
Reading, M ;
Pollock, HM ;
Song, M ;
Hourston, DJ .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (12) :4268-4274