The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox-dependent structural and cellular stability

被引:110
作者
Dames, SA
Mulet, JM
Rathgeb-Szabo, K
Hall, MN
Grzesiek, S
机构
[1] Univ Basel, Dept Biol Struct, CH-4056 Basel, Switzerland
[2] Univ Basel, Dept Biochem, Biozentrum, CH-4056 Basel, Switzerland
关键词
D O I
10.1074/jbc.M501116200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The target of rapamycin ( TOR) is a highly conserved Ser/Thr kinase that plays a central role in the control of cellular growth. TOR has a characteristic multidomain structure. Only the kinase domain has catalytic function; the other domains are assumed to mediate interactions with TOR substrates and regulators. Except for the rapamycin-binding domain, there are no high-resolution structural data available for TOR. Here, we present a structural, biophysical, and mutagenesis study of the extremely conserved COOH-terminal FATC domain. The importance of this domain for TOR function has been highlighted in several publications. We show that the FATC domain, in its oxidized form, exhibits a novel structural motif consisting of an alpha-helix and a COOH-terminal disulfide-bonded loop between two completely conserved cysteine residues. Upon reduction, the flexibility of the loop region increases dramatically. The structural data, the redox potential of the disulfide bridge, and the biochemical data of a cysteine to serine mutant indicate that the intracellular redox potential can affect the cellular amount of the TOR protein via the FATC domain. Because the amount of TOR mRNA is not changed, the redox state of the FATC disulfide bond is probably influencing the degradation of TOR.
引用
收藏
页码:20558 / 20564
页数:7
相关论文
共 55 条
[21]   Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR) -dependent signaling [J].
Humar, R ;
Kiefer, FN ;
Berns, H ;
Resink, TJ ;
Battegay, EJ .
FASEB JOURNAL, 2002, 16 (08) :771-780
[22]  
Huth JR, 1997, PROTEIN SCI, V6, P2359
[23]   OXIDIZED REDOX STATE OF GLUTATHIONE IN THE ENDOPLASMIC-RETICULUM [J].
HWANG, C ;
SINSKEY, AJ ;
LODISH, HF .
SCIENCE, 1992, 257 (5076) :1496-1502
[24]   TOR signalling in bugs, brain and brawn [J].
Jacinto, E ;
Hall, MN .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2003, 4 (02) :117-126
[25]   Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast [J].
Jiang, Y ;
Broach, JR .
EMBO JOURNAL, 1999, 18 (10) :2782-2792
[26]   NMR VIEW - A COMPUTER-PROGRAM FOR THE VISUALIZATION AND ANALYSIS OF NMR DATA [J].
JOHNSON, BA ;
BLEVINS, RA .
JOURNAL OF BIOMOLECULAR NMR, 1994, 4 (05) :603-614
[27]   MTOR interacts with Raptor to form a nutrient-sensitive complex that signals to the cell growth machinery [J].
Kim, DH ;
Sarbassov, DD ;
Ali, SM ;
King, JE ;
Latek, RR ;
Erdjument-Bromage, H ;
Tempst, P ;
Sabatini, DM .
CELL, 2002, 110 (02) :163-175
[28]   Glutathione redox potential in response to differentiation and enzyme inducers [J].
Kirlin, WG ;
Cai, JY ;
Thompson, SA ;
Diaz, D ;
Kavanagh, TJ ;
Jones, DP .
FREE RADICAL BIOLOGY AND MEDICINE, 1999, 27 (11-12) :1208-1218
[29]   MOLMOL: A program for display and analysis of macromolecular structures [J].
Koradi, R ;
Billeter, M ;
Wuthrich, K .
JOURNAL OF MOLECULAR GRAPHICS, 1996, 14 (01) :51-&
[30]   HEAT repeats mediate plasma membrane localization of Tor2p in yeast [J].
Kunz, J ;
Schneider, U ;
Howald, I ;
Schmidt, A ;
Hall, MN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (47) :37011-37020