Issues and Considerations regarding Sharable Data Sets for Recommender Systems in Technology Enhanced Learning

被引:46
作者
Drachsler, Hendrik [1 ]
Bogers, Toine [2 ]
Vuorikari, Riina [3 ]
Verbert, Katrien [4 ]
Duval, Erik [4 ]
Manouselis, Nikos [5 ]
Beham, Guenter [6 ]
Lindstaedt, Stephanie [6 ,7 ]
Stern, Hermann [6 ]
Friedrich, Martin [8 ]
Wolpers, Martin [8 ]
机构
[1] Open Univ Netherlands OUNL, NL-6401 DL Heerlen, Netherlands
[2] RSLIS, DK-2300 Copenhagen, Denmark
[3] European Schoolnet EUN, B-1050 Brussels, Belgium
[4] Katholieke Univ Leuven, B-3001 Heverlee, Belgium
[5] Greek Res & Technol Network GRNET, GR-11527 Athens, Greece
[6] Know Ctr GmbH, A-8010 Graz, Austria
[7] Graz Univ Technol, Knowledge Management Inst, A-8010 Graz, Austria
[8] Fraunhofer Inst Appl Informat Tech FIT, D-53754 St Augustin, Germany
来源
PROCEEDINGS OF THE 1ST WORKSHOP ON RECOMMENDER SYSTEMS FOR TECHNOLOGY ENHANCED LEARNING (RECSYSTEL 2010) | 2010年 / 1卷 / 02期
基金
比利时弗兰德研究基金会;
关键词
Data sharing; recommender systems; data sets; sharing format; technology-enhanced learning; legal protection rights;
D O I
10.1016/j.procs.2010.08.010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper raises the issue of missing data sets for recommender systems in Technology Enhanced Learning that can be used as benchmarks to compare different recommendation approaches. It discusses how suitable data sets could be created according to some initial suggestions, and investigates a number of steps that may be followed in order to develop reference data sets that will be adopted and reused within a scientific community. In addition, policies are discussed that are needed to enhance sharing of data sets by taking into account legal protection rights. Finally, an initial elaboration of a representation and exchange format for sharable TEL data sets is carried out. The paper concludes with future research needs. (C) 2010 Published by Elsevier B.V.
引用
收藏
页码:2849 / 2858
页数:10
相关论文
共 22 条
[1]   Incorporating contextual information in recommender systems using a multidimensional approach [J].
Adomavicius, G ;
Sankaranarayanan, R ;
Sen, S ;
Tuzhilin, A .
ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2005, 23 (01) :103-145
[2]  
[Anonymous], SOCIAL INFORM RETRIE
[3]  
[Anonymous], 2009, J DIGITAL INFORM
[4]  
[Anonymous], 2000, Analysis of recommendation algorithms for e-commerce, Proceedings of the Second ACM Conference on E-commerce (EC)
[5]  
*AOL, AOL SEARCH DAT SCAND
[6]  
BOGERS T, 2009, THESIS TILBURG U
[7]   ReMashed - An Usability Study of a Recommender System for Mash-Ups for Learning [J].
Drachsler, H. ;
Pecceu, D. ;
Arts, T. ;
Hutten, E. ;
Rutledge, L. ;
van Rosmalen, P. ;
Hummel, H. ;
Koper, R. .
INTERNATIONAL JOURNAL OF EMERGING TECHNOLOGIES IN LEARNING, 2010, 5 :7-11
[8]   Duplicate record detection: A survey [J].
Elmagarmid, Ahmed K. ;
Ipeirotis, Panagiotis G. ;
Verykios, Vassilios S. .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2007, 19 (01) :1-16
[9]  
Glahn C, 2009, EDUC TECHNOL SOC, V12, P44
[10]   Eigentaste: A constant time collaborative filtering algorithm [J].
Goldberg, K ;
Roeder, T ;
Gupta, D ;
Perkins, C .
INFORMATION RETRIEVAL, 2001, 4 (02) :133-151