Electronic devices based on purified carbon nanotubes grown by high-pressure decomposition of carbon monoxide

被引:70
作者
Johnston, DE [1 ]
Islam, MF [1 ]
Yodh, AG [1 ]
Johnson, AT [1 ]
机构
[1] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nmat1427
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The excellent properties of transistors, wires and sensors made from single-walled carbon nanotubes (SWNTs) make them promising candidates for use in advanced nanoelectronic systems(1). Gas-phase growth procedures such as the high-pressure decomposition of carbon monoxide (HiPCO) method(2,3) yield large quantities of small-diameter semiconducting SWNTs, which are ideal for use in nanoelectronic circuits. As-grown HiPCO material, however, commonly contains a large fraction of carbonaceous impurities that degrade the properties of SWNT devices(4). Here we demonstrate a purification, deposition and fabrication process that yields devices consisting of metallic and semiconducting nanotubes with electronic characteristics vastly superior to those of circuits made from raw HiPCO. Source-drain current measurements on the circuits as a function of temperature and backgate voltage are used to quantify the energy gap of semiconducting nanotubes in a field-effect transistor geometry. This work demonstrates significant progress towards the goal of producing complex integrated circuits from bulk-grown SWNT material.
引用
收藏
页码:589 / 592
页数:4
相关论文
共 27 条
[1]   Subband population in a single-wall carbon nanotube diode [J].
Antonov, RD ;
Johnson, AT .
PHYSICAL REVIEW LETTERS, 1999, 83 (16) :3274-3276
[2]   Field-modulated carrier transport in carbon nanotube transistors [J].
Appenzeller, J ;
Knoch, J ;
Derycke, V ;
Martel, R ;
Wind, S ;
Avouris, P .
PHYSICAL REVIEW LETTERS, 2002, 89 (12) :126801-126801
[3]   Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst [J].
Bachilo, SM ;
Balzano, L ;
Herrera, JE ;
Pompeo, F ;
Resasco, DE ;
Weisman, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (37) :11186-11187
[4]   Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study [J].
Bronikowski, MJ ;
Willis, PA ;
Colbert, DT ;
Smith, KA ;
Smalley, RE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2001, 19 (04) :1800-1805
[5]   High resolution capillary electrophoresis of carbon nanotubes [J].
Doorn, SK ;
Fields, RE ;
Hu, H ;
Hamon, MA ;
Haddon, RC ;
Selegue, JP ;
Majidi, V .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (12) :3169-3174
[6]   Extraordinary mobility in semiconducting carbon nanotubes [J].
Durkop, T ;
Getty, SA ;
Cobas, E ;
Fuhrer, MS .
NANO LETTERS, 2004, 4 (01) :35-39
[7]   Controlled creation of a carbon nanotube diode by a scanned gate [J].
Freitag, M ;
Radosavljevic, M ;
Zhou, YX ;
Johnson, AT ;
Smith, WF .
APPLIED PHYSICS LETTERS, 2001, 79 (20) :3326-3328
[8]   Role of single defects in electronic transport through carbon nanotube field-effect transistors [J].
Freitag, M ;
Johnson, AT ;
Kalinin, SV ;
Bonnell, DA .
PHYSICAL REVIEW LETTERS, 2002, 89 (21)
[9]   Direct growth of single-walled carbon nanotube scanning probe microscopy tips [J].
Hafner, JH ;
Cheung, CL ;
Lieber, CM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (41) :9750-9751
[10]   Electrostatic engineering of nanotube transistors for improved performance [J].
Heinze, S ;
Tersoff, J ;
Avouris, P .
APPLIED PHYSICS LETTERS, 2003, 83 (24) :5038-5040