Interpolation and approximation of piecewise smooth functions

被引:43
作者
Arandiga, F
Cohen, A
Donat, R
Dyn, N
机构
[1] Univ Valencia, Dept Matemat Aplicada, Valencia, Spain
[2] Univ Paris 06, Lab Jacques Louis Lions, F-75013 Paris, France
[3] Tel Aviv Univ, Sch Math Sci, IL-69987 Ramat Aviv, Israel
关键词
piecewise smooth functions; interpolation; ENO; subcell resolution; critical sampling rate;
D O I
10.1137/S0036142903426245
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper provides approximation orders for a class of nonlinear interpolation procedures for uniformly sampled univariate data. The interpolation is based on essentially nonoscillatory (ENO) and subcell resolution (SR) reconstruction techniques. These nonlinear techniques aim at reducing significantly the approximation error for functions with isolated singularities and are therefore attractive for applications such as shock computations or image compression. We prove that in the presence of isolated singularities, the approximation order provided by the interpolation procedure is improved by a factor of h relative to the linear methods, where h is the sampling rate. Moreover, for h below a critical value, we recover the optimal approximation order as for uniformly smooth functions.
引用
收藏
页码:41 / 57
页数:17
相关论文
共 15 条
[1]   Tensor product multiresolution analysis with error control for compact image representation [J].
Amat, S ;
Aràndiga, F ;
Cohen, A ;
Donat, R .
SIGNAL PROCESSING, 2002, 82 (04) :587-608
[2]   Data compression with ENO schemes:: A case study [J].
Amat, S ;
Aràndiga, F ;
Cohen, A ;
Donat, R ;
Garcia, G ;
von Oehsen, M .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 11 (02) :273-288
[3]  
Arandiga F, 2003, IEEE IMAGE PROC, P701
[4]   Nonlinear multiscale decompositions:: The approach of A.!Harten [J].
Aràndiga, F ;
Donat, R .
NUMERICAL ALGORITHMS, 2000, 23 (2-3) :175-216
[5]  
CHAN T, 2002, 0250 UCLA CAM
[6]   Nonlinear wavelet transforms for image coding via lifting [J].
Claypoole, RL ;
Davis, GM ;
Sweldens, W ;
Baraniuk, RG .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (12) :1449-1459
[7]  
Cohen A., 2003, STUDIES MATH ITS APP, V32
[8]  
DeVore R. A., 1998, Acta Numerica, V7, P51, DOI 10.1017/S0962492900002816
[10]   DISCRETE MULTIRESOLUTION ANALYSIS AND GENERALIZED WAVELETS [J].
HARTEN, A .
APPLIED NUMERICAL MATHEMATICS, 1993, 12 (1-3) :153-192