Coupling governs entrainment range of circadian clocks

被引:266
作者
Abraham, Ute [1 ]
Granada, Adrian E. [2 ]
Westermark, Pal O. [2 ]
Heine, Markus [1 ]
Kramer, Achim [1 ]
Herzel, Hanspeter [2 ]
机构
[1] Charite, Lab Chronobiol, D-10115 Berlin, Germany
[2] Humboldt Univ, Inst Theoret Biol, Berlin, Germany
关键词
circadian clock; coupling; entrainment; mathematical modeling; oscillator; RAT SUPRACHIASMATIC NUCLEUS; GENE-EXPRESSION; FUNCTIONAL-ANALYSIS; NOCTURNAL RODENTS; RUNNING ACTIVITY; RESPONSE CURVE; RHYTHMS; PHASE; LIGHT; OSCILLATORS;
D O I
10.1038/msb.2010.92
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light-dark cycles ('entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN-the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system. Molecular Systems Biology 6: 438; published online 30 November 2010; doi:10.1038/msb.2010.92
引用
收藏
页数:13
相关论文
共 79 条
[21]  
DAAN S, 1976, J COMP PHYSIOL, V106, P267, DOI 10.1007/BF01417858
[22]   Antiphase oscillation of the left and right suprachiasmatic nuclei [J].
de la Iglesia, HO ;
Meyer, J ;
Carpino, A ;
Schwartz, WJ .
SCIENCE, 2000, 290 (5492) :799-801
[23]   Forced desynchronization of dual circadian oscillators within the rat suprachiasmatic nucleus [J].
de la Iglesia, HO ;
Cambras, T ;
Schwartz, WJ ;
Díez-Noguera, A .
CURRENT BIOLOGY, 2004, 14 (09) :796-800
[24]   New features of the software MatCont for bifurcation analysis of dynamical systems [J].
Dhooge, A. ;
Govaerts, W. ;
Kuznetsov, Yu. A. ;
Meijer, H. G. E. ;
Sautois, B. .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2008, 14 (02) :147-175
[25]  
Ditto W, 2002, NATURE, V415, P736, DOI 10.1038/415736b
[26]   A detailed predictive model of the mammalian circadian clock [J].
Forger, DB ;
Peskin, CS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (25) :14806-14811
[27]   Circadian Timing in the Lung; A Specific Role for Bronchiolar Epithelial Cells [J].
Gibbs, J. E. ;
Beesley, S. ;
Plumb, J. ;
Singh, D. ;
Farrow, S. ;
Ray, D. W. ;
Loudon, A. S. I. .
ENDOCRINOLOGY, 2009, 150 (01) :268-276
[28]   UNIVERSAL BIFURCATIONS AND THE CLASSIFICATION OF CARDIAC-ARRHYTHMIAS [J].
GLASS, L ;
GUEVARA, MR ;
SHRIER, A .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1987, 504 :168-178
[29]   Spontaneous synchronization of coupled circadian oscillators [J].
Gonze, D ;
Bernard, S ;
Waltermann, C ;
Kramer, A ;
Herzel, H .
BIOPHYSICAL JOURNAL, 2005, 89 (01) :120-129
[30]   How to Achieve Fast Entrainment? The Timescale to Synchronization [J].
Granada, Adrian E. ;
Herzel, Hanspeter .
PLOS ONE, 2009, 4 (09)