Stable determination of a crack in a planar inhomogeneous conductor

被引:32
作者
Alessandrini, G
Rondi, L
机构
[1] Univ Trieste, Dipartimento Sci Matemat, I-34100 Trieste, Italy
[2] SISSA, ISAS, I-34014 Trieste, Italy
关键词
inverse problems; cracks; elliptic equations; quasi-conformal mappings;
D O I
10.1137/S0036141097325502
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a stability estimate for the inverse problem of cracks under essentially minimal regularity assumptions on the crack and on the background conductivity.
引用
收藏
页码:326 / 340
页数:15
相关论文
共 17 条
[1]   Unique determination of multiple cracks by two measurements [J].
Alessandrini, G ;
Valenzuela, AD .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (03) :913-921
[2]   ELLIPTIC-EQUATIONS IN DIVERGENCE FORM, GEOMETRIC CRITICAL-POINTS OF SOLUTIONS, AND STEKLOFF EIGENFUNCTIONS [J].
ALESSANDRINI, G ;
MAGNANINI, R .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1994, 25 (05) :1259-1268
[3]  
Alessandrini G, 1997, INDIANA U MATH J, V46, P1
[4]   Examples of instability in inverse boundary-value problems [J].
Alessandrini, G .
INVERSE PROBLEMS, 1997, 13 (04) :887-897
[5]   AN IDENTIFICATION PROBLEM FOR AN ELLIPTIC EQUATION IN 2 VARIABLES [J].
ALESSANDRINI, G .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 145 :265-295
[7]  
ALESSANDRINI G, 1993, INVERSE PROBLEMS MAT, P1
[8]  
Bers L, 1964, PARTIAL DIFFERENTIAL
[9]  
BERS L, 1955, CONV INT EQ LIN DER
[10]   A UNIQUENESS RESULT CONCERNING THE IDENTIFICATION OF A COLLECTION OF CRACKS FROM FINITELY MANY ELECTROSTATIC BOUNDARY MEASUREMENTS [J].
BRYAN, K ;
VOGELIUS, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (04) :950-958