Density estimation by the penalized combinatorial method

被引:8
作者
Biau, G
Devroye, L
机构
[1] Univ Paris 06, Lab Stat Theor & Appl, F-75013 Paris, France
[2] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2V6, Canada
关键词
multivariate density estimation; Vapnik-Chervonenkis dimension; mixture densities; penalization;
D O I
10.1016/j.jmva.2004.04.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let f be an unknown multivariate density belonging to a prespecified parametric class of densities, F-k, where k is unknown, but F-k subset of Tk+1 for all k and each F-k has finite Vapnik-Chervonenkis dimension. Given an i.i.d. sample of size n drawn from f, we show that it is possible to select automatically, and without extra restrictions on f, an estimate f with the property that E{integral vertical bar f(n,k) - f vertical bar} = O(1/root n). Our method is inspired by the combinatorial tools developed in Devroye and Lugosi (Combinatorial Methods in Density Estimation, Springer, New York, 2001) and it includes a wide range of density models, such as mixture models or exponential families. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:196 / 208
页数:13
相关论文
共 49 条
[21]  
Everitt B. S., 1981, FINITE MIXTURE DISTR
[22]   Unsupervised learning of finite mixture models [J].
Figueiredo, MAT ;
Jain, AK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (03) :381-396
[23]  
Freund Y., 1999, Journal of Japanese Society for Artificial Intelligence, V14, P771
[24]   Likelihood ratio of unidentifiable models and multilayer neural networks [J].
Fukumizu, K .
ANNALS OF STATISTICS, 2003, 31 (03) :833-851
[25]  
Gyorfi L., 2002, DISTRIBUTION FREE TH
[26]  
HARTIGAN J. A., 1985, Proceedings of the Berkley Conference in Honor of Jerzy Neyman and Jack Kiefer, V2, P807
[27]   Estimating mixtures of regressions [J].
Hurn, M ;
Justel, A ;
Robert, CP .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (01) :55-79
[28]  
James LF, 2001, ANN STAT, V29, P1281
[29]   HIERARCHICAL MIXTURES OF EXPERTS AND THE EM ALGORITHM [J].
JORDAN, MI ;
JACOBS, RA .
NEURAL COMPUTATION, 1994, 6 (02) :181-214
[30]   Nonparametric regression function estimation using interaction least squares splines and complexity regularization [J].
Kohler, M .
METRIKA, 1998, 47 (02) :147-163