A Highly Efficient Approach to Protein Interactome Mapping Based on Collaborative Filtering Framework

被引:59
作者
Luo, Xin [1 ,2 ]
You, Zhuhong [2 ]
Zhou, Mengchu [3 ]
Li, Shuai [2 ]
Leung, Hareton [2 ]
Xia, Yunni [1 ]
Zhu, Qingsheng [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong 999077, Hong Kong, Peoples R China
[3] New Jersey Inst Technol, Dept Elect & Comp Engn, Newark, NJ 07102 USA
来源
SCIENTIFIC REPORTS | 2015年 / 5卷
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
CANCER SYSTEMS BIOLOGY; NETWORK EVOLUTION; INTERACTION MAP; RECONSTRUCTION; IDENTIFICATION; RELIABILITY; COMPLEXES; DESIGN; ATLAS;
D O I
10.1038/srep07702
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly.
引用
收藏
页数:10
相关论文
共 47 条
[31]  
Przulj N., 2014, SCI REP, V4, P8
[32]   Towards a proteome-scale map of the human protein-protein interaction network [J].
Rual, JF ;
Venkatesan, K ;
Hao, T ;
Hirozane-Kishikawa, T ;
Dricot, A ;
Li, N ;
Berriz, GF ;
Gibbons, FD ;
Dreze, M ;
Ayivi-Guedehoussou, N ;
Klitgord, N ;
Simon, C ;
Boxem, M ;
Milstein, S ;
Rosenberg, J ;
Goldberg, DS ;
Zhang, LV ;
Wong, SL ;
Franklin, G ;
Li, SM ;
Albala, JS ;
Lim, JH ;
Fraughton, C ;
Llamosas, E ;
Cevik, S ;
Bex, C ;
Lamesch, P ;
Sikorski, RS ;
Vandenhaute, J ;
Zoghbi, HY ;
Smolyar, A ;
Bosak, S ;
Sequerra, R ;
Doucette-Stamm, L ;
Cusick, ME ;
Hill, DE ;
Roth, FP ;
Vidal, M .
NATURE, 2005, 437 (7062) :1173-1178
[33]   Interaction generality, a measurement to assess the reliability of a protein-protein interaction [J].
Saito, R ;
Suzuki, H ;
Hayashizaki, Y .
NUCLEIC ACIDS RESEARCH, 2002, 30 (05) :1163-1168
[34]   Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network [J].
Simonis, Nicolas ;
Rual, Jean-Francois ;
Carvunis, Anne-Ruxandra ;
Tasan, Murat ;
Lemmens, Irma ;
Hirozane-Kishikawa, Tomoko ;
Hao, Tong ;
Sahalie, Julie M. ;
Venkatesan, Kavitha ;
Gebreab, Fana ;
Cevik, Sebiha ;
Klitgord, Niels ;
Fan, Changyu ;
Braun, Pascal ;
Li, Ning ;
Ayivi-Guedehoussou, Nono ;
Dann, Elizabeth ;
Bertin, Nicolas ;
Szeto, David ;
Dricot, Ameli ;
Yildirim, Muhammed A. ;
Lin, Chenwei ;
de Smet, Anne-Sophie ;
Kao, Huey-Ling ;
Simon, Christophe ;
Smolyar, Alex ;
Ahn, Jin Sook ;
Tewari, Muneesh ;
Boxem, Mike ;
Milstein, Stuart ;
Yu, Haiyuan ;
Dreze, Matija ;
Vandenhaute, Jean ;
Gunsalus, Kristin C. ;
Cusick, Michael E. ;
Hill, David E. ;
Tavernier, Jan ;
Roth, Frederick P. ;
Vidal, Marc .
NATURE METHODS, 2009, 6 (01) :47-54
[35]   Characterization and prediction of protein-protein interactions within and between complexes [J].
Sprinzak, Einat ;
Altuvia, Yael ;
Margalit, Hanah .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (40) :14718-14723
[36]   A gene atlas of the mouse and human protein-encoding transcriptomes [J].
Su, AI ;
Wiltshire, T ;
Batalov, S ;
Lapp, H ;
Ching, KA ;
Block, D ;
Zhang, J ;
Soden, R ;
Hayakawa, M ;
Kreiman, G ;
Cooke, MP ;
Walker, JR ;
Hogenesch, JB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (16) :6062-6067
[37]   A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae [J].
Uetz, P ;
Giot, L ;
Cagney, G ;
Mansfield, TA ;
Judson, RS ;
Knight, JR ;
Lockshon, D ;
Narayan, V ;
Srinivasan, M ;
Pochart, P ;
Qureshi-Emili, A ;
Li, Y ;
Godwin, B ;
Conover, D ;
Kalbfleisch, T ;
Vijayadamodar, G ;
Yang, MJ ;
Johnston, M ;
Fields, S ;
Rothberg, JM .
NATURE, 2000, 403 (6770) :623-627
[38]  
Varjosalo M, 2013, NAT METHODS, V10, P307, DOI [10.1038/NMETH.2400, 10.1038/nmeth.2400]
[39]  
Venkatesan K, 2009, NAT METHODS, V6, P83, DOI [10.1038/nmeth.1280, 10.1038/NMETH.1280]
[40]   Cancer systems biology in the genome sequencing era: Part 2, evolutionary dynamics of tumor clonal networks and drug resistance [J].
Wang, Edwin ;
Zou, Jinfeng ;
Zaman, Naif ;
Beitel, Lenore K. ;
Trifiro, Mark ;
Paliouras, Miltiadis .
SEMINARS IN CANCER BIOLOGY, 2013, 23 (04) :286-292