Anodic properties of hollow carbon nanofibers for Li-ion battery

被引:111
作者
Lee, Byoung-Sun [1 ]
Son, Seoung-Bum [1 ,2 ]
Park, Kyu-Min [1 ]
Yu, Woong-Ryeol [1 ]
Oh, Kyu-Hwan [1 ]
Lee, Se-Hee [2 ,3 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea
[2] Univ Colorado 427 UCB, Dept Mech Engn, Boulder, CO 80309 USA
[3] Seoul Natl Univ, Dept Mat Sci & Engn, World Class Univ, Hybrid Mat Program, Seoul 151742, South Korea
基金
新加坡国家研究基金会;
关键词
Hollow carbon nanofibers; Anodic properties; Thermal treatment; Turbostratic carbon structure; CORE-SHELL NANOWIRES; ELECTROCHEMICAL PROPERTIES; MECHANICAL-PROPERTIES; LITHIUM INSERTION; SECONDARY BATTERY; TIN-NANOPARTICLES; HEAT-TREATMENT; HIGH-CAPACITY; PORE-SIZE; POLYACRYLONITRILE;
D O I
10.1016/j.jpowsour.2011.10.030
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work reports on hollow carbon nanofibers (HCNIrs) as anode materials for Li-ion batteries. Various HCNEs are synthesized using co-axial electrospinning of styrene-co-acrylonitrile (core) and poly(acrylonitrile) (shell) solutions and subsequent thermal treatments. The microstructures of HCNEs are examined using SEM, Raman spectroscopy, WAXD, and HR-TEM. The effect of the carbonization temperature on their turbostratic carbon structures and electrochemical properties is systematically investigated. As the carbonization temperature increases, both crystallite thickness and length significantly increases while the initial irreversible capacity decreases. These predictable microstructure and electrochemical performance of HCNEs provide important insight for the design of novel nanostructurecl anode materials such as Si or Sn encapsulated HCNFs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:53 / 60
页数:8
相关论文
共 52 条
[1]   Strong carbon nanofibers from electrospun polyacrylonitrile [J].
Arshad, Salman N. ;
Naraghi, Mohammad ;
Chasiotis, Ioannis .
CARBON, 2011, 49 (05) :1710-1719
[2]   On the reduction of lithium insertion capacity in hard-carbon anode materials with increasing heat-treatment temperature [J].
Buiel, E ;
George, AE ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (07) :2252-2257
[3]   A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries [J].
Cui, Guanglei ;
Hu, Yong-Sheng ;
Zhi, Linjie ;
Wu, Dongqing ;
Lieberwirth, Ingo ;
Maier, Joachim ;
Muellen, Klaus .
SMALL, 2007, 3 (12) :2066-2069
[4]   Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries [J].
Cui, Li-Feng ;
Yang, Yuan ;
Hsu, Ching-Mei ;
Cui, Yi .
NANO LETTERS, 2009, 9 (09) :3370-3374
[5]   MECHANISMS FOR LITHIUM INSERTION IN CARBONACEOUS MATERIALS [J].
DAHN, JR ;
ZHENG, T ;
LIU, YH ;
XUE, JS .
SCIENCE, 1995, 270 (5236) :590-593
[6]   Recent development of carbon materials for Li ion batteries [J].
Endo, M ;
Kim, C ;
Nishimura, K ;
Fujino, T ;
Miyashita, K .
CARBON, 2000, 38 (02) :183-197
[7]   Lithium storage behavior for various kinds of carbon anodes in Li ion secondary battery [J].
Endo, M ;
Nishimura, Y ;
Takahashi, T ;
Takeuchi, K ;
Dresselhaus, MS .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1996, 57 (6-8) :725-728
[8]   INFLUENCE OF OXYGEN ON CHEMICAL-REACTIONS DURING STABILIZATION OF PAN AS CARBON-FIBER PRECURSOR [J].
FITZER, E ;
MULLER, DJ .
CARBON, 1975, 13 (01) :63-69
[9]   Carbon materials for lithium-ion rechargeable batteries [J].
Flandrois, S ;
Simon, B .
CARBON, 1999, 37 (02) :165-180
[10]  
FONTON S, 1980, J MATER SCI, V15, P909