Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors

被引:242
作者
Wang, Gongming [1 ]
Lu, Xihong [1 ,2 ]
Zhai, Teng [2 ]
Ling, Yichuan [1 ]
Wang, Hanyu [1 ]
Tong, Yexiang [2 ]
Li, Yat [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[2] Sun Yat Sen Univ, Sch Chem & Chem Engn, MOE Key Lab Bioinorgan & Synthet Chem, KLGHEI Environm & Energy Chem, Guangzhou 510275, Guangdong, Peoples R China
关键词
HYDROGEN-PEROXIDE; CARBON NANOTUBES; NANOWIRE ARRAYS; ELECTRODE; NIO; PERFORMANCE;
D O I
10.1039/c2nr30302g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a seed-mediated hydrothermal growth of free-standing nickel hydroxide [Ni(OH)(2)] and nickel oxide (NiO) nanoflake arrays and their implementation as electrodes for non-enzymatic glucose sensors. Ni(OH)(2) nanoflakes were converted into porous NiO nanoflakes upon thermal annealing in air at temperatures of 300 degrees C or above. NiO nanoflake-arrayed sensors achieve an excellent glucose sensitivity of similar to 8500 mu A cm(-2) mM(-1) and a low detection limit of 1.2 mu M glucose at an applied bias of 0.5 V vs. Ag/AgCl. The fabrication of the nanoflake electrode avoids the use of polymer binders representing additional advantage over the conventional powder based glucose sensors. Furthermore, they show good specificity to glucose in the presence of ascorbic acid, D-lactose and D-fructose.
引用
收藏
页码:3123 / 3127
页数:5
相关论文
共 38 条
[1]   Facile synthesis of porous tubular palladium nanostructures and their application in a nonenzymatic glucose sensor [J].
Bai, Hongyan ;
Han, Min ;
Du, Yuezhi ;
Bao, Jianchun ;
Dai, Zhihui .
CHEMICAL COMMUNICATIONS, 2010, 46 (10) :1739-1741
[2]   The use of copper(II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide [J].
Batchelor-McAuley, Christopher ;
Du, Yi ;
Wildgoose, Gregory G. ;
Compton, Richard G. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 135 (01) :230-235
[3]   Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance [J].
Cao, Fei ;
Guo, Shu ;
Ma, Huiyan ;
Shan, Decai ;
Yang, Shengxue ;
Gong, Jian .
BIOSENSORS & BIOELECTRONICS, 2011, 26 (05) :2756-2760
[4]   A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays [J].
Cao, Xia ;
Wang, Ning .
ANALYST, 2011, 136 (20) :4241-4246
[5]   Nanosensors and nanomaterials for monitoring glucose in diabetes [J].
Cash, Kevin J. ;
Clark, Heather A. .
TRENDS IN MOLECULAR MEDICINE, 2010, 16 (12) :584-593
[6]   ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY [J].
CLARK, LC ;
LYONS, C .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1962, 102 (01) :29-&
[7]   A p-Type NiO-Based Dye-Sensitized Solar Cell with an Open-Circuit Voltage of 0.35 V [J].
Gibson, Elizabeth A. ;
Smeigh, Amanda L. ;
Le Pleux, Loic ;
Fortage, Jerome ;
Boschloo, Gerrit ;
Blart, Errol ;
Pellegrin, Yann ;
Odobel, Fabrice ;
Hagfeldt, Anders ;
Hammarstrom, Leif .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (24) :4402-4405
[8]   Electrochemical Glucose Sensors-Developments Using Electrostatic Assembly and Carbon Nanotubes for Biosensor Construction [J].
Harper, Alice ;
Anderson, Mark R. .
SENSORS, 2010, 10 (09) :8248-8274
[9]   A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode [J].
Jiang, Liao-Chuan ;
Zhang, Wei-De .
BIOSENSORS & BIOELECTRONICS, 2010, 25 (06) :1402-1407
[10]   Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes [J].
Li, Jiangtian ;
Zhao, Wei ;
Huang, Fuqiang ;
Manivannan, Ayyakkannu ;
Wu, Nianqiang .
NANOSCALE, 2011, 3 (12) :5103-5109