Mammalian meiotic recombination hot spots

被引:72
作者
Arnheim, Norman [1 ]
Calabrese, Peter [1 ]
Tiemann-Boege, Irene [1 ]
机构
[1] Univ So Calif, Mol & Computat Biol Program, Los Angeles, CA 90089 USA
关键词
gene conversion; the coalescent; linkage disequilibrium; sperm typing; hot spot;
D O I
10.1146/annurev.genet.41.110306.130301
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Our understanding of the details of mammalian meiotic recombination has recently advanced significantly. Sperm typing technologies, linkage studies, and computational inferences from population genetic data have together provided information in unprecedented detail about the location and activity of the sites of crossing-over in mice and humans. The results show that the vast majority of meiotic recombination events are localized to narrow DNA regions (hot spots) that constitute only a small fraction of the genome. The data also suggest that the molecular basis of hot spot activity is unlikely to be strictly determined by specific DNA sequence motifs in cis. Further molecular studies are needed to understand how hot spots originate, function and evolve.
引用
收藏
页码:369 / 399
页数:31
相关论文
共 183 条
  • [1] How to exchange your partner. Workshop on recombination mechanisms and the maintenance of genomic stability
    Aguilera, Andres
    Boulton, Simon J.
    [J]. EMBO REPORTS, 2007, 8 (01) : 28 - 33
  • [2] Differential timing and control of noncrossover and crossover recombination during meiosis
    Allers, T
    Lichten, M
    [J]. CELL, 2001, 106 (01) : 47 - 57
  • [3] A haplotype map of the human genome
    Altshuler, D
    Brooks, LD
    Chakravarti, A
    Collins, FS
    Daly, MJ
    Donnelly, P
    Gibbs, RA
    Belmont, JW
    Boudreau, A
    Leal, SM
    Hardenbol, P
    Pasternak, S
    Wheeler, DA
    Willis, TD
    Yu, FL
    Yang, HM
    Zeng, CQ
    Gao, Y
    Hu, HR
    Hu, WT
    Li, CH
    Lin, W
    Liu, SQ
    Pan, H
    Tang, XL
    Wang, J
    Wang, W
    Yu, J
    Zhang, B
    Zhang, QR
    Zhao, HB
    Zhao, H
    Zhou, J
    Gabriel, SB
    Barry, R
    Blumenstiel, B
    Camargo, A
    Defelice, M
    Faggart, M
    Goyette, M
    Gupta, S
    Moore, J
    Nguyen, H
    Onofrio, RC
    Parkin, M
    Roy, J
    Stahl, E
    Winchester, E
    Ziaugra, L
    Shen, Y
    [J]. NATURE, 2005, 437 (7063) : 1299 - 1320
  • [4] NONRANDOM ASSOCIATION OF POLYMORPHIC RESTRICTION SITES IN THE BETA-GLOBIN GENE-CLUSTER
    ANTONARAKIS, SE
    BOEHM, CD
    GIARDINA, PJV
    KAZAZIAN, HH
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (01): : 137 - 141
  • [5] Hot and cold spots of recombination in the human genome: The reason we should find them and how this can be achieved
    Arnheim, N
    Calabrese, P
    Nordborg, M
    [J]. AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 73 (01) : 5 - 16
  • [6] Crossover breakpoint mapping identifies a subtelomeric hotspot for male meiotic recombination
    Badge, RM
    Yardley, J
    Jeffreys, AJ
    Armour, JAL
    [J]. HUMAN MOLECULAR GENETICS, 2000, 9 (08) : 1239 - 1244
  • [7] LOCALIZATION AND GENETIC-LINKAGE OF THE HUMAN-IMMUNOGLOBULIN HEAVY-CHAIN GENES AND THE CREATINE-KINASE BRAIN (CKB) GENE - IDENTIFICATION OF A HOT-SPOT FOR RECOMBINATION
    BENGER, JC
    TESHIMA, I
    WALTER, MA
    BRUBACHER, MG
    DAOUK, GH
    COX, DW
    [J]. GENOMICS, 1991, 9 (04) : 614 - 622
  • [8] Genome-wide identification of pseudogenes capable of disease-causing gene conversion
    Bischof, Jared M.
    Chiang, Annie P.
    Scheetz, Todd E.
    Stone, Edwin M.
    Casavant, Thomas L.
    Sheffield, Val C.
    Braun, Terry A.
    [J]. HUMAN MUTATION, 2006, 27 (06) : 545 - 552
  • [9] Multiple mechanisms of meiotic recombination
    Bishop, Douglas K.
    [J]. CELL, 2006, 127 (06) : 1095 - 1097
  • [10] BOTSTEIN D, 1980, AM J HUM GENET, V32, P314