Evidence for a spontaneous gapped state in ultraclean bilayer graphene

被引:112
作者
Bao, Wenzhong [2 ,3 ]
Velasco, Jairo, Jr. [2 ]
Zhang, Fan [1 ,4 ]
Jing, Lei [2 ]
Standley, Brian [5 ]
Smirnov, Dmitry [6 ]
Bockrath, Marc [2 ]
MacDonald, Allan H. [1 ]
Lau, Chun Ning [2 ]
机构
[1] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[2] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[3] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
[4] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[5] CALTECH, Dept Appl Phys, Pasadena, CA 90211 USA
[6] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
topological states; anomalous hall; spontaneous quantum Hall states; electron-electron interactions; layer antiferromagnets; TRANSPORT;
D O I
10.1073/pnas.1205978109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
At the charge neutrality point, bilayer graphene (BLG) is strongly susceptible to electronic interactions and is expected to undergo a phase transition to a state with spontaneously broken symmetries. By systematically investigating a large number of single- and double-gated BLG devices, we observe a bimodal distribution of minimum conductivities at the charge neutrality point. Although sigma(min) is often approximately 2-3 e(2)/h (where e is the electron charge and h is Planck's constant), it is several orders of magnitude smaller in BLG devices that have both high mobility and low extrinsic doping. The insulating state in the latter samples appears below a transition temperature T-c of approximately 5 K and has a T = 0 energy gap of approximately 3 meV. Transitions between these different states can be tuned by adjusting disorder or carrier density.
引用
收藏
页码:10802 / 10805
页数:4
相关论文
共 44 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]  
Bao W, 2011, NAT PHYS, V7, P948, DOI [10.1038/nphys2103, 10.1038/NPHYS2103]
[3]   Lithography-free fabrication of high quality substrate-supported and freestanding graphene devices [J].
Bao, Wenzhong ;
Liu, Gang ;
Zhao, Zeng ;
Zhang, Hang ;
Yan, Dong ;
Deshpande, Aparna ;
LeRoy, Brian J. ;
Lau, Chun Ning .
NANO RESEARCH, 2010, 3 (02) :98-102
[4]   Temperature-dependent transport in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Hone, J. ;
Stormer, H. L. ;
Kim, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (09)
[5]   Low-density ferromagnetism in biased bilayer graphene [J].
Castro, Eduardo V. ;
Peres, N. M. R. ;
Stauber, T. ;
Silva, N. A. P. .
PHYSICAL REVIEW LETTERS, 2008, 100 (18)
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Minimal longitudinal dc conductivity of perfect bilayer graphene [J].
Cserti, Jozsef .
PHYSICAL REVIEW B, 2007, 75 (03)
[8]   Theory of carrier transport in bilayer graphene [J].
Das Sarma, S. ;
Hwang, E. H. ;
Rossi, E. .
PHYSICAL REVIEW B, 2010, 81 (16)
[9]  
Das Sarma S, 2011, ARXIV11090988
[10]   Effect of the band structure topology on the minimal conductivity for bilayer graphene with symmetry breaking [J].
David, Gyula ;
Rakyta, Peter ;
Oroszlany, Laszlo ;
Cserti, Jozsef .
PHYSICAL REVIEW B, 2012, 85 (04)