Dirac point metamorphosis from third-neighbor couplings in graphene and related materials

被引:40
作者
Bena, Cristina [1 ,2 ]
Simon, Laurent [3 ]
机构
[1] Univ Paris 11, Phys Solides Lab, F-91405 Orsay, France
[2] Commissariat Energie Atom & Energies Alternat Sac, CNRS, Unite Rech Associee 2306, Inst Phys Theor, F-91191 Gif Sur Yvette, France
[3] Univ Haute Alsace, CNRS, Inst Sci Mat Mulhouse, Lab Rech Commun, F-68093 Mulhouse, France
来源
PHYSICAL REVIEW B | 2011年 / 83卷 / 11期
关键词
D O I
10.1103/PhysRevB.83.115404
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the band structure and the density of states of graphene and graphene-like materials in the presence of a next-to-nearest-neighbor coupling (N2) and a third-nearest-neighbor coupling (N3). We show that for values of N3 larger or equal to 1/3 of the value of the nearest-neighbor hopping (NN), extra Dirac points appear in the spectrum. If N3 is exactly equal to 1/3 NN, the new Dirac points are localized at the M points of the Brillouin zone and are hybrid: the electrons have a linear dispersion along the Gamma M direction and a quadratic dispersion along the perpendicular direction MK. For larger values of N3 the new points have a linear dispersion and are situated along the MK line. For a value of N3 equal to 1/2 NN, these points merge with the Dirac cones at the K points, yielding a gapless quadratic dispersion around K, while for larger values each quadratic point at K splits again into four Dirac points. The effects of changing the N2 coupling are not so dramatic. We calculate the density of states, and we show that increasing the N3 coupling lowers the energy of the Van Hove singularities, and when N3 is larger than 1/3 NN, the Van Hove singularities split in two, giving rise to extra singularities at low energies.
引用
收藏
页数:7
相关论文
共 19 条
[1]   Klein Tunneling in Deformed Honeycomb Lattices [J].
Bahat-Treidel, Omri ;
Peleg, Or ;
Grobman, Mark ;
Shapira, Nadav ;
Segev, Mordechai ;
Pereg-Barnea, T. .
PHYSICAL REVIEW LETTERS, 2010, 104 (06)
[2]   Extra Dirac points in the energy spectrum for superlattices on single-layer graphene [J].
Barbier, M. ;
Vasilopoulos, P. ;
Peeters, F. M. .
PHYSICAL REVIEW B, 2010, 81 (07)
[3]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[4]   Gap opening in graphene by shear strain [J].
Cocco, Giulio ;
Cadelano, Emiliano ;
Colombo, Luciano .
PHYSICAL REVIEW B, 2010, 81 (24)
[5]   Fast and slow edges in bilayer graphene nanoribbons: Tuning the transition from band to Mott insulator [J].
Cortijo, Alberto ;
Oroszlany, Laszlo ;
Schomerus, Henning .
PHYSICAL REVIEW B, 2010, 81 (23)
[6]   Superlattice of resonators on monolayer graphene created by intercalated gold nanoclusters [J].
Cranney, M. ;
Vonau, F. ;
Pillai, P. B. ;
Denys, E. ;
Aubel, D. ;
De Souza, M. M. ;
Bena, C. ;
Simon, L. .
EPL, 2010, 91 (06)
[7]   New magnetic field dependence of Landau levels in a graphenelike structure [J].
Dietl, Petra ;
Piechon, Frederic ;
Montambaux, Gilles .
PHYSICAL REVIEW LETTERS, 2008, 100 (23)
[8]   Zero modes of tight-binding electrons on the honeycomb lattice [J].
Hasegawa, Yasumasa ;
Konno, Rikio ;
Nakano, Hiroki ;
Kohmoto, Mahito .
PHYSICAL REVIEW B, 2006, 74 (03)
[9]   Observation of Van Hove singularities in twisted graphene layers [J].
Li, Guohong ;
Luican, A. ;
Lopes dos Santos, J. M. B. ;
Castro Neto, A. H. ;
Reina, A. ;
Kong, J. ;
Andrei, E. Y. .
NATURE PHYSICS, 2010, 6 (02) :109-113
[10]   Extended van Hove Singularity and Superconducting Instability in Doped Graphene [J].
McChesney, J. L. ;
Bostwick, Aaron ;
Ohta, Taisuke ;
Seyller, Thomas ;
Horn, Karsten ;
Gonzalez, J. ;
Rotenberg, Eli .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)