Superlattice of resonators on monolayer graphene created by intercalated gold nanoclusters

被引:22
作者
Cranney, M. [1 ]
Vonau, F. [1 ]
Pillai, P. B. [2 ]
Denys, E. [1 ]
Aubel, D. [1 ]
De Souza, M. M. [2 ]
Bena, C. [3 ,4 ]
Simon, L. [1 ]
机构
[1] Inst Sci Mat Mulhouse IS2M LRC 7228 CNRS UHA, F-68093 Mulhouse, France
[2] Elect & Elect Engn Univ Sheffield, Semicond Mat & Device Grp, Sheffield S1 3JD, S Yorkshire, England
[3] Univ Paris 11, Phys Solides Lab, F-91405 Orsay, France
[4] CEA Saclay Orme Merisiers, Inst Phys Theor, F-91190 Gif Sur Yvette, France
基金
英国工程与自然科学研究理事会;
关键词
ELECTRONIC-STRUCTURE; EPITAXIAL GRAPHENE; SURFACE; INTERFERENCE; 6H-SIC(0001); GRAPHITE; STATES; GAS;
D O I
10.1209/0295-5075/91/66004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Here we report on a "new" type of ordering which allows to modify the electronic structure of a graphene monolayer (ML). We have intercalated small gold clusters between the top monolayer graphene and the buffer layer of epitaxial graphene. We show that these clusters perturb the quasiparticles on the ML graphene, acting as quantum dots creating a superlattice of resonators on the graphene ML, as revealed by a strong pattern of standing waves. A detailed analysis of the standing-wave pattern using Fourier Transform Scanning Tunneling Spectroscopy strongly indicates that this phenomenon can arise from a strong modification of the band structure of graphene and (or) from Charge Density Waves (CDW) where a large extension of Van Hove singularities is involved. Copyright (C) EPLA, 2010
引用
收藏
页数:6
相关论文
共 27 条
[1]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[2]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[3]   Electron-Phonon Interaction in the High-TC Cuprates in the Framework of the Van Hove Scenario [J].
Bouvier, Jacqueline ;
Bok, Julien .
ADVANCES IN CONDENSED MATTER PHYSICS, 2010, 2010
[4]   Quasiparticle Chirality in Epitaxial Graphene Probed at the Nanometer Scale [J].
Brihuega, I. ;
Mallet, P. ;
Bena, C. ;
Bose, S. ;
Michaelis, C. ;
Vitali, L. ;
Varchon, F. ;
Magaud, L. ;
Kern, K. ;
Veuillen, J. Y. .
PHYSICAL REVIEW LETTERS, 2008, 101 (20)
[5]  
CASTERMAN D, UNPUB
[6]   Heteroepitaxial graphite on 6H-SiC(0001):: Interface formation through conduction-band electronic structure [J].
Forbeaux, I ;
Themlin, JM ;
Debever, JM .
PHYSICAL REVIEW B, 1998, 58 (24) :16396-16406
[7]   Atomic Hole Doping of Graphene [J].
Gierz, Isabella ;
Riedl, Christian ;
Starke, Ulrich ;
Ast, Christian R. ;
Kern, Klaus .
NANO LETTERS, 2008, 8 (12) :4603-4607
[8]   Atomic and electronic structure of gold clusters:: understanding flakes, cages and superatoms from simple concepts [J].
Hakkinen, Hannu .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (09) :1847-1859
[9]   WSXM:: A software for scanning probe microscopy and a tool for nanotechnology [J].
Horcas, I. ;
Fernandez, R. ;
Gomez-Rodriguez, J. M. ;
Colchero, J. ;
Gomez-Herrero, J. ;
Baro, A. M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (01)
[10]   Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy [J].
Lauffer, P. ;
Emtsev, K. V. ;
Graupner, R. ;
Seyller, Th. ;
Ley, L. ;
Reshanov, S. A. ;
Weber, H. B. .
PHYSICAL REVIEW B, 2008, 77 (15)